Mitochondria in Structural and Functional Cardiac Remodeling

  • Natalia Torrealba
  • Pablo Aranguiz
  • Camila Alonso
  • Beverly A. RothermelEmail author
  • Sergio LavanderoEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 982)


The heart must function continuously as it is responsible for both supplying oxygen and nutrients throughout the entire body, as well as for the transport of waste products to excretory organs. When facing either a physiological or pathological increase in cardiac demand, the heart undergoes structural and functional remodeling as a means of adapting to increased workload. These adaptive responses can include changes in gene expression, protein composition, and structure of sub-cellular organelles involved in energy production and metabolism. Mitochondria are essential for cardiac function, as they supply the ATP necessary to support continuous cycles of contraction and relaxation. In addition, mitochondria carry out other important processes, including synthesis of essential cellular components, calcium buffering, and initiation of cell death signals. Not surprisingly, mitochondrial dysfunction has been linked to several cardiovascular disorders, including hypertension, cardiac hypertrophy, ischemia/reperfusion and heart failure. The present chapter will discuss how changes in mitochondrial cristae structure, fusion/fission dynamics, fatty acid oxidation, ATP production, and the generation of reactive oxygen species might impact cardiac structure and function, particularly in the context of pathological hypertrophy and fibrotic response. In addition, the mechanistic role of mitochondria in autophagy and programmed cell death of cardiomyocytes will be addressed. Here we will also review strategies to improve mitochondrial function and discuss their cardioprotective potential.


Mitochondria Heart Cardiac remodeling Sub-cellular remodeling 



This work was supported by grants from the Comision Nacional de Investigacion Cientıfica y Tecnologica (CONICYT), Chile (FONDAP 15130011 to S.L., Postdoctoral FONDECYT 3160549 to P.A.). N.T. is recipient of a PhD fellowship from CONICYT, Chile. National Institutes of Health U54 HD087351 and HL098051 to B.A.R.


  1. 1.
    Vliegen HW, van der Laarse A, Cornelisse CJ, Eulderink F. Myocardial changes in pressure overload-induced left ventricular hypertrophy. A study on tissue composition, polyploidization and multinucleation. Eur Heart J. 1991;12(4):488–94.PubMedCrossRefGoogle Scholar
  2. 2.
    Nadal-Ginard B, Anversa P, Kajstura J, Leri A. Cardiac stem cells and myocardial regeneration. Novartis Found Symp. 2005;265:142–54; discussion 55–7, 204–11.Google Scholar
  3. 3.
    Ford LE. Heart size. Circ Res. 1976;39(3):297–303.PubMedCrossRefGoogle Scholar
  4. 4.
    Porter KE, Turner NA. Cardiac fibroblasts: at the heart of myocardial remodeling. Pharmacol Ther. 2009;123(2):255–78.PubMedCrossRefGoogle Scholar
  5. 5.
    McMullen JR, Izumo S. Role of the insulin-like growth factor 1 (IGF1)/phosphoinositide-3-kinase (PI3K) pathway mediating physiological cardiac hypertrophy. Novartis Found Symp. 2006;274:90–111; discussion -7, 52–5, 272–6.Google Scholar
  6. 6.
    Weber KT, Brilla CG. Pathological hypertrophy and cardiac interstitium. Fibrosis and renin- angiotensin-aldosterone system. Circulation. 1991;83(6):1849–65.PubMedCrossRefGoogle Scholar
  7. 7.
    Swynghedauw B. Molecular mechanisms of myocardial remodeling. Physiol Rev. 1999;79(1):215–62.PubMedGoogle Scholar
  8. 8.
    Barki-Harrington L, Perrino C, Rockman HA. Network integration of the adrenergic system in cardiac hypertrophy. Cardiovasc Res. 2004;63(3):391–402.PubMedCrossRefGoogle Scholar
  9. 9.
    Unger T, Li J. The role of the renin-angiotensin-aldosterone system in heart failure. J Renin-Angiotensin-Aldosterone Syst. 2004;5(Suppl 1):S7–10.PubMedCrossRefGoogle Scholar
  10. 10.
    Archer SL. Mitochondrial dynamics – mitochondrial fission and fusion in human diseases. N Engl J Med. 2013;369(23):2236–51.PubMedCrossRefGoogle Scholar
  11. 11.
    Neely JR, Morgan HE. Relationship between carbohydrate and lipid metabolism and the energy balance of heart muscle. Annu Rev Physiol. 1974;36:413–59.PubMedCrossRefGoogle Scholar
  12. 12.
    Hom J, Sheu SS. Morphological dynamics of mitochondria – a special emphasis on cardiac muscle cells. J Mol Cell Cardiol. 2009;46(6):811–20.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Kuzmicic J, Del Campo A, Lopez-Crisosto C, Morales PE, Pennanen C, Bravo-Sagua R, et al. Mitochondrial dynamics: a potential new therapeutic target for heart failure. Rev Esp Cardiol. 2011;64(10):916–23.PubMedCrossRefGoogle Scholar
  14. 14.
    Hoppel CL, Tandler B, Fujioka H, Riva A. Dynamic organization of mitochondria in human heart and in myocardial disease. Int J Biochem Cell Biol. 2009;41(10):1949–56.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Riva A, Tandler B, Loffredo F, Vazquez E, Hoppel C. Structural differences in two biochemically defined populations of cardiac mitochondria. Am J Physiol Heart Circ Physiol. 2005;289(2):H868–72.PubMedCrossRefGoogle Scholar
  16. 16.
    Palmer JW, Tandler B, Hoppel CL. Biochemical properties of subsarcolemmal and interfibrillar mitochondria isolated from rat cardiac muscle. J Biol Chem. 1977;252(23):8731–9.PubMedGoogle Scholar
  17. 17.
    Palmer JW, Tandler B, Hoppel CL. Heterogeneous response of subsarcolemmal heart mitochondria to calcium. Am J Phys. 1986;250(5 Pt 2):H741–8.Google Scholar
  18. 18.
    Gustafsson CM, Falkenberg M, Larsson NG. Maintenance and Expression of Mammalian Mitochondrial DNA. Annu Rev Biochem. 2016;85:133–60.PubMedCrossRefGoogle Scholar
  19. 19.
    Friedman JR, Nunnari J. Mitochondrial form and function. Nature. 2014;505(7483):335–43.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Fung S, Nishimura T, Sasarman F, Shoubridge EA. The conserved interaction of C7orf30 with MRPL14 promotes biogenesis of the mitochondrial large ribosomal subunit and mitochondrial translation. Mol Biol Cell. 2013;24(3):184–93.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Wallace DC. Genetics: mitochondrial DNA in evolution and disease. Nature. 2016;535(7613):498–500.PubMedCrossRefGoogle Scholar
  22. 22.
    Vasquez-Trincado C, Garcia-Carvajal I, Pennanen C, Parra V, Hill JA, Rothermel BA, et al. Mitochondrial dynamics, mitophagy and cardiovascular disease. J Physiol. 2016;594(3):509–25.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Chelli B, Falleni A, Salvetti F, Gremigni V, Lucacchini A, Martini C. Peripheral-type benzodiazepine receptor ligands: mitochondrial permeability transition induction in rat cardiac tissue. Biochem Pharmacol. 2001;61(6):695–705.PubMedCrossRefGoogle Scholar
  24. 24.
    Scalettar BA, Abney JR, Hackenbrock CR. Dynamics, structure, and function are coupled in the mitochondrial matrix. Proc Natl Acad Sci U S A. 1991;88(18):8057–61.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Liu X, Hajnoczky G. Ca2+-dependent regulation of mitochondrial dynamics by the Miro-Milton complex. Int J Biochem Cell Biol. 2009;41(10):1972–6.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Liesa M, Palacin M, Zorzano A. Mitochondrial dynamics in mammalian health and disease. Physiol Rev. 2009;89(3):799–845.PubMedCrossRefGoogle Scholar
  27. 27.
    Ong SB, Hausenloy DJ. Mitochondrial morphology and cardiovascular disease. Cardiovasc Res. 2010;88(1):16–29.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Santel A, Frank S, Gaume B, Herrler M, Youle RJ, Fuller MT. Mitofusin-1 protein is a generally expressed mediator of mitochondrial fusion in mammalian cells. J Cell Sci. 2003;116(Pt 13):2763–74.PubMedCrossRefGoogle Scholar
  29. 29.
    Ishihara N, Eura Y, Mihara K. Mitofusin 1 and 2 play distinct roles in mitochondrial fusion reactions via GTPase activity. J Cell Sci. 2004;117(Pt 26):6535–46.PubMedCrossRefGoogle Scholar
  30. 30.
    Santel A, Fuller MT. Control of mitochondrial morphology by a human mitofusin. J Cell Sci. 2001;114(Pt 5):867–74.PubMedGoogle Scholar
  31. 31.
    Alexander C, Votruba M, Pesch UE, Thiselton DL, Mayer S, Moore A, et al. OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat Genet. 2000;26(2):211–5.PubMedCrossRefGoogle Scholar
  32. 32.
    Olichon A, Emorine LJ, Descoins E, Pelloquin L, Brichese L, Gas N, et al. The human dynamin- related protein OPA1 is anchored to the mitochondrial inner membrane facing the inter-membrane space. FEBS Lett. 2002;523(1–3):171–6.PubMedCrossRefGoogle Scholar
  33. 33.
    Cipolat S, de Brito OM, Dal Zilio B, Scorrano L. OPA1 requires mitofusin 1 to promote mitochondrial fusion. P Natl Acad Sci USA. 2004;101(45):15927–32.CrossRefGoogle Scholar
  34. 34.
    Ehses S, Raschke I, Mancuso G, Bernacchia A, Geimer S, Tondera D, et al. Regulation of OPA1 processing and mitochondrial fusion by m-AAA protease isoenzymes and OMA1. J Cell Biol. 2009;187(7):1023–36.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Frezza C, Cipolat S, de Brito OM, Micaroni M, Beznoussenko GV, Rudka T, et al. OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell. 2006;126(1):177–89.PubMedCrossRefGoogle Scholar
  36. 36.
    Smirnova E, Shurland DL, Ryazantsev SN, van der Bliek AM. A human dynamin-related protein controls the distribution of mitochondria. J Cell Biol. 1998;143(2):351–8.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Smirnova E, Griparic L, Shurland DL, van der Bliek AM. Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol Biol Cell. 2001;12(8):2245–56.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Santel A, Frank S. Shaping mitochondria: the complex posttranslational regulation of the mitochondrial fission protein DRP1. IUBMB Life. 2008;60(7):448–55.PubMedCrossRefGoogle Scholar
  39. 39.
    Jofuku A, Ishihara N, Mihara K. Analysis of functional domains of rat mitochondrial Fis1, the mitochondrial fission-stimulating protein. Biochem Bioph Res Co. 2005;333(2):650–9.CrossRefGoogle Scholar
  40. 40.
    Gandre-Babbe S, van der Bliek AM. The novel tail-anchored membrane protein Mff controls mitochondrial and peroxisomal fission in mammalian cells. Mol Biol Cell. 2008;19(6):2402–12.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Otera H, Wang CX, Cleland MM, Setoguchi K, Yokota S, Youle RJ, et al. Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells. J Cell Biol. 2010;191(6):1141–58.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Zhao J, Liu T, Jin S, Wang X, Qu M, Uhlen P, et al. Human MIEF1 recruits Drp1 to mitochondrial outer membranes and promotes mitochondrial fusion rather than fission. EMBO J. 2011;30(14):2762–78.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Loson OC, Song Z, Chen H, Chan DC. Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission. Mol Biol Cell. 2013;24(5):659–67.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Palmer CS, Osellame LD, Laine D, Koutsopoulos OS, Frazier AE, Ryan MT. MiD49 and MiD51, new components of the mitochondrial fission machinery. EMBO Rep. 2011;12(6):565–73.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Palmer CS, Elgass KD, Parton RG, Osellame LD, Stojanovski D, Ryan MT. Adaptor proteins MiD49 and MiD51 can act independently of Mff and Fis1 in Drp1 recruitment and are specific for mitochondrial fission. J Biol Chem. 2013;288(38):27584–93.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Tait SW, Green DR. Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol. 2010;11(9):621–32.PubMedCrossRefGoogle Scholar
  47. 47.
    Jiang X, Jiang H, Shen Z, Wang X. Activation of mitochondrial protease OMA1 by Bax and Bak promotes cytochrome c release during apoptosis. Proc Natl Acad Sci U S A. 2014;111(41):14782–7.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    de Brito OM, Scorrano L. Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature. 2008;456(7222):605–U47.PubMedCrossRefGoogle Scholar
  49. 49.
    Shen T, Zheng M, Cao CM, Chen CL, Tang J, Zhang WR, et al. Mitofusin-2 is a major determinant of oxidative stress-mediated heart muscle cell apoptosis. J Biol Chem. 2007;282(32):23354–61.PubMedCrossRefGoogle Scholar
  50. 50.
    Papanicolaou KN, Khairallah RJ, Ngoh GA, Chikando A, Luptak I, O’Shea KM, et al. Mitofusin-2 maintains mitochondrial structure and contributes to stress-induced permeability transition in cardiac myocytes. Mol Cell Biol. 2011;31(6):1309–28.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Parra V, Eisner V, Chiong M, Criollo A, Moraga F, Garcia A, et al. Changes in mitochondrial dynamics during ceramide-induced cardiomyocyte early apoptosis. Cardiovasc Res. 2008;77(2):387–97.PubMedCrossRefGoogle Scholar
  52. 52.
    Xu S, Cherok E, Das S, Li S, Roelofs BA, Ge SX, et al. Mitochondrial E3 ubiquitin ligase MARCH5 controls mitochondrial fission and cell sensitivity to stress-induced apoptosis through regulation of MiD49 protein. Mol Biol Cell. 2016;27(2):349–59.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Pei H, Yang Y, Zhao H, Li X, Yang D, Li D, et al. The role of mitochondrial functional proteins in ROS production in ischemic heart diseases. Oxidative Med Cell Longev. 2016;2016:5470457.CrossRefGoogle Scholar
  54. 54.
    Chen L, Gong Q, Stice JP, Knowlton AA. Mitochondrial OPA1, apoptosis, and heart failure. Cardiovasc Res. 2009;84(1):91–9.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Ong SB, Subrayan S, Lim SY, Yellon DM, Davidson SM, Hausenloy DJ. Inhibiting mitochondrial fission protects the heart against ischemia/reperfusion injury. Circulation. 2010;121(18):2012–22.PubMedCrossRefGoogle Scholar
  56. 56.
    Zepeda R, Kuzmicic J, Parra V, Troncoso R, Pennanen C, Riquelme JA, et al. Drp1 loss-of-function reduces cardiomyocyte oxygen dependence protecting the heart from ischemia-reperfusion injury. J Cardiovasc Pharmacol. 2014;63(6):477–87.PubMedCrossRefGoogle Scholar
  57. 57.
    Pennanen C, Parra V, Lopez-Crisosto C, Morales PE, Del Campo A, Gutierrez T, et al. Mitochondrial fission is required for cardiomyocyte hypertrophy mediated by a Ca2+-calcineurin signaling pathway. J Cell Sci. 2014;127(Pt 12):2659–71.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Disatnik MH, Ferreira JC, Campos JC, Gomes KS, Dourado PM, Qi X, et al. Acute inhibition of excessive mitochondrial fission after myocardial infarction prevents long-term cardiac dysfunction. J Am Heart Assoc. 2013;2(5):e000461.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Andreyev AY, Kushnareva YE, Starkov AA. Mitochondrial metabolism of reactive oxygen species. Biochem Biokhim. 2005;70(2):200–14.CrossRefGoogle Scholar
  60. 60.
    Cadenas E, Boveris A, Ragan CI, Stoppani AO. Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beef-heart mitochondria. Arch Biochem Biophys. 1977;180(2):248–57.PubMedCrossRefGoogle Scholar
  61. 61.
    Sabri A, Hughie HH, Lucchesi PA. Regulation of hypertrophic and apoptotic signaling pathways by reactive oxygen species in cardiac myocytes. Antioxid Redox Signal. 2003;5(6):731–40.PubMedCrossRefGoogle Scholar
  62. 62.
    Siwik DA, Pagano PJ, Colucci WS. Oxidative stress regulates collagen synthesis and matrix metalloproteinase activity in cardiac fibroblasts. Am J Physiol Cell Physiol. 2001;280(1):C53–60.PubMedGoogle Scholar
  63. 63.
    Ni R, Zheng D, Xiong S, Hill DJ, Sun T, Gardiner RB, et al. Mitochondrial calpain-1 disrupts ATP synthase and induces superoxide generation in type 1 diabetic hearts: a novel mechanism contributing to diabetic cardiomyopathy. Diabetes. 2016;65(1):255–68.PubMedGoogle Scholar
  64. 64.
    Huang Q, Zhou HJ, Zhang H, Huang Y, Hinojosa-Kirschenbaum F, Fan P, et al. Thioredoxin-2 inhibits mitochondrial reactive oxygen species generation and apoptosis stress kinase-1 activity to maintain cardiac function. Circulation. 2015;131(12):1082–97.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Akhmedov AT, Rybin V, Marin-Garcia J. Mitochondrial oxidative metabolism and uncoupling proteins in the failing heart. Heart Fail Rev. 2015;20(2):227–49.PubMedCrossRefGoogle Scholar
  66. 66.
    Aikawa R, Nagai T, Tanaka M, Zou Y, Ishihara T, Takano H, et al. Reactive oxygen species in mechanical stress-induced cardiac hypertrophy. Biochem Biophys Res Commun. 2001;289(4):901–7.PubMedCrossRefGoogle Scholar
  67. 67.
    Tanaka K, Honda M, Takabatake T. Redox regulation of MAPK pathways and cardiac hypertrophy in adult rat cardiac myocyte. J Am Coll Cardiol. 2001;37(2):676–85.PubMedCrossRefGoogle Scholar
  68. 68.
    Hirotani S, Otsu K, Nishida K, Higuchi Y, Morita T, Nakayama H, et al. Involvement of nuclear factor-kappaB and apoptosis signal-regulating kinase 1 in G-protein-coupled receptor agonist- induced cardiomyocyte hypertrophy. Circulation. 2002;105(4):509–15.PubMedCrossRefGoogle Scholar
  69. 69.
    Cheng TH, Cheng PY, Shih NL, Chen IB, Wang DL, Chen JJ. Involvement of reactive oxygen species in angiotensin II-induced endothelin-1 gene expression in rat cardiac fibroblasts. J Am Coll Cardiol. 2003;42(10):1845–54.PubMedCrossRefGoogle Scholar
  70. 70.
    Sorescu D, Griendling KK. Reactive oxygen species, mitochondria, and NAD(P)H oxidases in the development and progression of heart failure. Congest Heart Fail. 2002;8(3):132–40.PubMedCrossRefGoogle Scholar
  71. 71.
    Spinale FG. Bioactive peptide signaling within the myocardial interstitium and the matrix metalloproteinases. Circ Res. 2002;91(12):1082–4.PubMedCrossRefGoogle Scholar
  72. 72.
    Ghule AE, Kandhare AD, Jadhav SS, Zanwar AA, Bodhankar SL. Omega-3-fatty acid adds to the protective effect of flax lignan concentrate in pressure overload-induced myocardial hypertrophy in rats via modulation of oxidative stress and apoptosis. Int Immunopharmacol. 2015;28(1):751–63.PubMedCrossRefGoogle Scholar
  73. 73.
    Zhou T, Chuang CC, Zuo L. Molecular characterization of reactive oxygen species in myocardial ischemia-reperfusion injury. Biomed Res Int. 2015;2015:864946.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Li JZ, Yu SY, Mo D, Tang XN, Shao QR. Picroside II inhibits hypoxia/reoxygenation-induced cardiomyocyte apoptosis by ameliorating mitochondrial function through a mecha-nism involving a decrease in reactive oxygen species production. Int J Mol Med. 2015;35(2):446–52.Google Scholar
  75. 75.
    Xu J, Hu H, Chen B, Yue R, Zhou Z, Liu Y, et al. Lycopene protects against hypoxia/reoxygenation injury by alleviating ER stress induced apoptosis in neonatal mouse cardiomyocytes. PLoS One. 2015;10(8):e0136443.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Zhu Z, Zhu J, Zhao X, Yang K, Lu L, Zhang F, et al. All-trans retinoic acid ameliorates myocardial ischemia/reperfusion injury by reducing cardiomyocyte apoptosis. PLoS One. 2015;10(7):e0133414.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Hao J, Li WW, Du H, Zhao ZF, Liu F, Lu JC, et al. Role of vitamin C in cardioprotection of ischemia/reperfusion injury by activation of mitochondrial KATP channel. Chem Pharm Bull. 2016;64(6):548–57.PubMedCrossRefGoogle Scholar
  78. 78.
    Tsutsui H, Kinugawa S, Matsushima S. Oxidative stress and heart failure. Am J Physiol Heart Circ Physiol. 2011;301(6):H2181–90.PubMedCrossRefGoogle Scholar
  79. 79.
    Anilkumar N, Sirker A, Shah AM. Redox sensitive signaling pathways in cardiac remodeling, hypertrophy and failure. Front Biosci. 2009;14:3168–87.CrossRefGoogle Scholar
  80. 80.
    Young ME, Patil S, Ying J, Depre C, Ahuja HS, Shipley GL, et al. Uncoupling protein 3 transcription is regulated by peroxisome proliferator-activated receptor (alpha) in the adult rodent heart. FASEB J: Off Publ Fed Am Soc Exp Biol. 2001;15(3):833–45.CrossRefGoogle Scholar
  81. 81.
    Bugger H, Guzman C, Zechner C, Palmeri M, Russell KS, Russell 3rd RR. Uncoupling protein downregulation in doxorubicin-induced heart failure improves mitochondrial coupling but increases reactive oxygen species generation. Cancer Chemother Pharmacol. 2011;67(6):1381–8.PubMedCrossRefGoogle Scholar
  82. 82.
    Sastre-Serra J, Valle A, Company MM, Garau I, Oliver J, Roca P. Estrogen down-regulates uncoupling proteins and increases oxidative stress in breast cancer. Free Radic Biol Med. 2010;48(4):506–12.PubMedCrossRefGoogle Scholar
  83. 83.
    Modriansky M, Gabrielova E. Uncouple my heart: the benefits of inefficiency. J Bioenerg Biomembr. 2009;41(2):133–6.PubMedCrossRefGoogle Scholar
  84. 84.
    Noma T, Nishiyama A, Mizushige K, Murakami K, Tsuji T, Kohno M, et al. Possible role of uncoupling protein in regulation of myocardial energy metabolism in aortic regurgitation model rats. FASEB J: Off Publ Fed Am Soc Exp Biol. 2001;15(7):1206–8.Google Scholar
  85. 85.
    Murray AJ, Cole MA, Lygate CA, Carr CA, Stuckey DJ, Little SE, et al. Increased mitochondrial uncoupling proteins, respiratory uncoupling and decreased efficiency in the chronically infarcted rat heart. J Mol Cell Cardiol. 2008;44(4):694–700.PubMedCrossRefGoogle Scholar
  86. 86.
    Guerra S, Leri A, Wang X, Finato N, Di Loreto C, Beltrami CA, et al. Myocyte death in the failing human heart is gender dependent. Circ Res. 1999;85(9):856–66.PubMedCrossRefGoogle Scholar
  87. 87.
    Kar P, Samanta K, Shaikh S, Chowdhury A, Chakraborti T, Chakraborti S. Mitochondrial calpain system: an overview. Arch Biochem Biophys. 2010;495(1):1–7.PubMedCrossRefGoogle Scholar
  88. 88.
    Marin-Garcia J. Mitochondrial DNA repair: a novel therapeutic target for heart failure. Heart Fail Rev. 2016;21(5):475–87.PubMedCrossRefGoogle Scholar
  89. 89.
    Jacob SF, Wurstle ML, Delgado ME, Rehm M. An analysis of the truncated bid- and ROS- dependent spatial propagation of mitochondrial permeabilization waves during apoptosis. J Biol Chem. 2016;291(9):4603–13.PubMedCrossRefGoogle Scholar
  90. 90.
    Kinnally KW, Antonsson B. A tale of two mitochondrial channels, MAC and PTP, in apoptosis. Apoptosis: Int J Programmed Cell Death. 2007;12(5):857–68.CrossRefGoogle Scholar
  91. 91.
    Sun Y, Zhang Y, Yan M, Wu Y, Zheng X. B-type natriuretic peptide-induced cardioprotection against reperfusion is associated with attenuation of mitochondrial permeability transition. Biol Pharm Bull. 2009;32(9):1545–51.PubMedCrossRefGoogle Scholar
  92. 92.
    Ikeda G, Matoba T, Nakano Y, Nagaoka K, Ishikita A, Nakano K, et al. Nanoparticle-mediated targeting of cyclosporine a enhances cardioprotection against ischemia-reperfusion injury through inhibition of mitochondrial permeability transition pore opening. Sci Rep. 2016;6:20467.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Thompson J, Hu Y, Lesnefsky EJ, Chen Q. Activation of mitochondrial calpain and increased cardiac injury: beyond AIF release. Am J Physiol Heart Circ Physiol. 2016;310(3):H376–84.PubMedCrossRefGoogle Scholar
  94. 94.
    Gatica D, Chiong M, Lavandero S, Klionsky DJ. Molecular mechanisms of autophagy in the cardiovascular system. Circ Res. 2015;116(3):456–67.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Saito T, Sadoshima J. Molecular mechanisms of mitochondrial autophagy/mitophagy in the heart. Circ Res. 2015;116(8):1477–90.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature. 1998;392(6676):605–8.PubMedCrossRefGoogle Scholar
  97. 97.
    Valente EM, Abou-Sleiman PM, Caputo V, Muqit MM, Harvey K, Gispert S, et al. Hereditary early- onset Parkinson’s disease caused by mutations in PINK1. Science. 2004;304(5674):1158–60.PubMedCrossRefGoogle Scholar
  98. 98.
    Lee Y, Lee HY, Hanna RA, Gustafsson AB. Mitochondrial autophagy by Bnip3 involves Drp1- mediated mitochondrial fission and recruitment of Parkin in cardiac myocytes. Am J Physiol Heart Circ Physiol. 2011;301(5):H1924–31.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Billia F, Hauck L, Konecny F, Rao V, Shen J, Mak TW. PTEN-inducible kinase 1 (PINK1)/Park6 is indispensable for normal heart function. Proc Natl Acad Sci U S A. 2011;108(23):9572–7.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Min Jin SM, Youle RJ. PINK1- and Parkin-mediated mitophagy at a glance. J Cell Sci. 2012;125:795–9.CrossRefGoogle Scholar
  101. 101.
    Kubli DA, Zhang X, Lee Y, Hanna RA, Quinsay MN, Nguyen CK, et al. Parkin protein deficiency exacerbates cardiac injury and reduces survival following myocardial infarction. J Biol Chem. 2013;288(2):915–26.PubMedCrossRefGoogle Scholar
  102. 102.
    Santulli G, Lewis DR, Marks AR. Physiology and pathophysiology of excitation–contraction coupling: the functional role of ryanodine receptor. J Muscle Res Cell Motil. 2017 (in press); doi:  10.1007/s10974-017-9470-z
  103. 103.
    Shao CH, Rozanski GJ, Nagai R, Stockdale FE, Patel KP, Wang M, et al. Carbonylation of myosin heavy chains in rat heart during diabetes. Biochem Pharmacol. 2010;80(2):205–17.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB, et al. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem. 2008;283(16):10892–903.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Kurian GA, Berenshtein E, Saada A, Chevion M. Rat cardiac mitochondrial sub-populations show distinct features of oxidative phosphorylation during ischemia, reperfusion and ischemic preconditioning. Cell Physiol Biochem. 2012;30(1):83–94.Google Scholar
  106. 106.
    Kanamori H, Takemura G, Goto K, Maruyama R, Tsujimoto A, Ogino A, et al. The role of autophagy emerging in postinfarction cardiac remodelling. Cardiovasc Res. 2011;91(2):330–9.PubMedCrossRefGoogle Scholar
  107. 107.
    Hoshino A, Matoba S, Iwai-Kanai E, Nakamura H, Kimata M, Nakaoka M, et al. p53-TIGAR axis attenuates mitophagy to exacerbate cardiac damage after ischemia. J Mol Cell Cardiol. 2012;52(1):175–84.PubMedCrossRefGoogle Scholar
  108. 108.
    Lesnefsky EJ, Moghaddas S, Tandler B, Kerner J, Hoppel CL. Mitochondrial dysfunction in cardiac disease: ischemia – reperfusion, aging, and heart failure. J Mol Cell Cardiol. 2001;33(6):1065–89.PubMedCrossRefGoogle Scholar
  109. 109.
    Frey N, Katus HA, Olson EN, Hill JA. Hypertrophy of the heart: a new therapeutic target? Circulation. 2004;109(13):1580–9.PubMedCrossRefGoogle Scholar
  110. 110.
    Zhou LY, Liu JP, Wang K, Gao J, Ding SL, Jiao JQ, et al. Mitochondrial function in cardiac hypertrophy. Int J Cardiol. 2013;167(4):1118–25.PubMedCrossRefGoogle Scholar
  111. 111.
    Wilkins BJ, Molkentin JD. Calcium-calcineurin signaling in the regulation of cardiac hypertrophy. Biochem Biophys Res Commun. 2004;322(4):1178–91.PubMedCrossRefGoogle Scholar
  112. 112.
    Maier LS. Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) in the heart. Adv Exp Med Biol. 2012;740:685–702.PubMedCrossRefGoogle Scholar
  113. 113.
    Michels G, Khan IF, Endres-Becker J, Rottlaender D, Herzig S, Ruhparwar A, et al. Regulation of the human cardiac mitochondrial Ca2+ uptake by 2 different voltage-gated Ca2+ channels. Circulation. 2009;119(18):2435–43.PubMedCrossRefGoogle Scholar
  114. 114.
    Berk BC, Fujiwara K, Lehoux S. ECM remodeling in hypertensive heart disease. J Clin Invest. 2007;117(3):568–75.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Frangogiannis NG. Regulation of the inflammatory response in cardiac repair. Circ Res. 2012;110(1):159–73.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Ashrafian H, McKenna WJ, Watkins H. Disease pathways and novel therapeutic targets in hypertrophic cardiomyopathy. Circ Res. 2011;109(1):86–96.PubMedCrossRefGoogle Scholar
  117. 117.
    Kong P, Christia P, Frangogiannis NG. The pathogenesis of cardiac fibrosis. Cell Mol Life Sci. 2014;71(4):549–74.PubMedCrossRefGoogle Scholar
  118. 118.
    Willems IE, Havenith MG, De Mey JG, Daemen MJ. The alpha-smooth muscle actin-positive cells in healing human myocardial scars. Am J Pathol. 1994;145(4):868–75.PubMedPubMedCentralGoogle Scholar
  119. 119.
    Leslie KO, Taatjes DJ, Schwarz J, von Turkovich M, Low RB. Cardiac myofibroblasts express alpha smooth muscle actin during right ventricular pressure overload in the rabbit. Am J Pathol. 1991;139(1):207–16.PubMedPubMedCentralGoogle Scholar
  120. 120.
    Xie M, Burchfield JS, Hill JA. Pathological ventricular remodeling: therapies: part 2 of 2. Circulation. 2013;128(9):1021–30.PubMedCrossRefGoogle Scholar
  121. 121.
    Widder JD, Fraccarollo D, Galuppo P, Hansen JM, Jones DP, Ertl G, et al. Attenuation of angiotensin II-induced vascular dysfunction and hypertension by overexpression of Thioredoxin 2. Hypertension. 2009;54(2):338–44.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Cucoranu I, Clempus R, Dikalova A, Phelan PJ, Ariyan S, Dikalov S, et al. NAD(P)H oxidase 4 mediates transforming growth factor-beta1-induced differentiation of cardiac fibroblasts into myofibroblasts. Circ Res. 2005;97(9):900–7.PubMedCrossRefGoogle Scholar
  123. 123.
    Hecker L, Vittal R, Jones T, Jagirdar R, Luckhardt TR, Horowitz JC, et al. NADPH oxidase-4 mediates myofibroblast activation and fibrogenic responses to lung injury. Nat Med. 2009;15(9):1077–81.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Jain M, Rivera S, Monclus EA, Synenki L, Zirk A, Eisenbart J, et al. Mitochondrial reactive oxygen species regulate transforming growth factor-beta signaling. J Biol Chem. 2013;288(2):770–7.PubMedCrossRefGoogle Scholar
  125. 125.
    Fraccarollo D, Galuppo P, Neuser J, Bauersachs J, Widder JD. Pentaerythritol tetranitrate targeting myocardial reactive oxygen species production improves left ventricular remodeling and function in rats with ischemic heart failure. Hypertension. 2015;66(5):978–87.PubMedCrossRefGoogle Scholar
  126. 126.
    Cleutjens JP, Kandala JC, Guarda E, Guntaka RV, Weber KT. Regulation of collagen degradation in the rat myocardium after infarction. J Mol Cell Cardiol. 1995;27(6):1281–92.PubMedCrossRefGoogle Scholar
  127. 127.
    Tyagi SC, Kumar SG, Haas SJ, Reddy HK, Voelker DJ, Hayden MR, et al. Post-transcriptional regulation of extracellular matrix metalloproteinase in human heart end-stage failure secondary to ischemic cardiomyopathy. J Mol Cell Cardiol. 1996;28(7):1415–28.PubMedCrossRefGoogle Scholar
  128. 128.
    Barcellos-Hoff MH, Dix TA. Redox-mediated activation of latent transforming growth factor-beta 1. Mol Endocrinol. 1996;10(9):1077–83.PubMedGoogle Scholar
  129. 129.
    Lijnen P, Papparella I, Petrov V, Semplicini A, Fagard R. Angiotensin II-stimulated collagen production in cardiac fibroblasts is mediated by reactive oxygen species. J Hypertens. 2006;24(4):757–66.PubMedCrossRefGoogle Scholar
  130. 130.
    Shi J, Dai W, Hale SL, Brown DA, Wang M, Han X, et al. Bendavia restores mitochondrial energy metabolism gene expression and suppresses cardiac fibrosis in the border zone of the infarcted heart. Life Sci. 2015;141:170–8.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Pei H, Du J, Song X, He L, Zhang Y, Li X, et al. Melatonin prevents adverse myocardial infarction remodeling via Notch1/Mfn2 pathway. Free Radic Biol Med. 2016;97:408–17.PubMedCrossRefGoogle Scholar
  132. 132.
    Schrader M, Costello JL, Godinho LF, Azadi AS, Islinger M. Proliferation and fission of peroxisomes – an update. Biochim Biophys Acta. 2016;1863(5):971–83.PubMedCrossRefGoogle Scholar
  133. 133.
    Ansari SB, Kurian GA. Hydrogen sulfide modulates sub-cellular susceptibility to oxidative stress induced by myocardial ischemic reperfusion injury. Chem Biol Interact. 2016;252:28–35.PubMedCrossRefGoogle Scholar
  134. 134.
    Merkwirth C, Dargazanli S, Tatsuta T, Geimer S, Lower B, Wunderlich FT, et al. Prohibitins control cell proliferation and apoptosis by regulating OPA1-dependent cristae morphogenesis in mitochondria. Genes Dev. 2008;22(4):476–88.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Norton M, Ng AC, Baird S, Dumoulin A, Shutt T, Mah N, et al. ROMO1 is an essential redox- dependent regulator of mitochondrial dynamics. Sci Signal. 2014;7(310):ra10.PubMedCrossRefGoogle Scholar
  136. 136.
    Loor G, Kondapalli J, Iwase H, Chandel NS, Waypa GB, Guzy RD, et al. Mitochondrial oxidant stress triggers cell death in simulated ischemia-reperfusion. Biochim Biophys Acta. 2011;1813(7):1382–94.PubMedCrossRefGoogle Scholar
  137. 137.
    Zhang P, Lu Y, Yu D, Zhang D, Hu W. TRAP1 provides protection against myocardial ischemia-reperfusion injury by ameliorating mitochondrial dysfunction. Cell Physiol Biochem: Int J Exp Cell Physiol Biochem Pharmacol. 2015;36(5):2072–82.CrossRefGoogle Scholar
  138. 138.
    Yellon DM, Hausenloy DJ. Myocardial reperfusion injury. N Engl J Med. 2007;357(11):1121–35.PubMedCrossRefGoogle Scholar
  139. 139.
    Murphy E, Steenbergen C. Mechanisms underlying acute protection from cardiac ischemia- reperfusion injury. Physiol Rev. 2008;88(2):581–609.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Eltzschig HK, Eckle T. Ischemia and reperfusion – from mechanism to translation. Nat Med. 2011;17(11):1391–401.PubMedCrossRefGoogle Scholar
  141. 141.
    Murphy E, Steenbergen C. Ion transport and energetics during cell death and protection. Physiology (Bethesda). 2008;23:115–23.Google Scholar
  142. 142.
    Santulli G, Nakashima R, Yuan Q, Marks AR. Intracellular calcium release channels: an update. J Physiol. 2017 (in press). doi:  10.1113/JP272781.
  143. 143.
    Stowe DF, Camara AK. Mitochondrial reactive oxygen species production in excitable cells: modulators of mitochondrial and cell function. Antioxid Redox Signal. 2009;11(6):1373–414.Google Scholar
  144. 144.
    Bernardi P, Rasola A, Forte M, Lippe G. The mitochondrial permeability transition pore: channel formation by F-ATP synthase, integration in signal transduction, and role in pathophysiology. Physiol Rev. 2015;95(4):1111–55.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Burwell LS, Nadtochiy SM, Tompkins AJ, Young S, Brookes PS. Direct evidence for S-nitrosation of mitochondrial complex I. Biochem J. 2006;394(Pt 3):627–34.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Halestrap AP. A pore way to die: the role of mitochondria in reperfusion injury and cardioprotection. Biochem Soc Trans. 2010;38(4):841–60.PubMedCrossRefGoogle Scholar
  147. 147.
    Ye G, Metreveli NS, Ren J, Epstein PN. Metallothionein prevents diabetes-induced deficits in cardiomyocytes by inhibiting reactive oxygen species production. Diabetes. 2003;52(3):777–83.PubMedCrossRefGoogle Scholar
  148. 148.
    Baseler WA, Dabkowski ER, Williamson CL, Croston TL, Thapa D, Powell MJ, et al. Proteomic alterations of distinct mitochondrial subpopulations in the type 1 diabetic heart: contribution of protein import dysfunction. Am J Physiol Regul Integr Comp Physiol. 2011;300(2):R186–200.PubMedCrossRefGoogle Scholar
  149. 149.
    Arslan F, de Kleijn DP, Pasterkamp G. Innate immune signaling in cardiac ischemia. Nat Rev Cardiol. 2011;8(5):292–300.PubMedCrossRefGoogle Scholar
  150. 150.
    Chen GY, Nunez G. Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol. 2010;10(12):826–37.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Mewton N, Croisille P, Gahide G, Rioufol G, Bonnefoy E, Sanchez I, et al. Effect of cyclosporine on left ventricular remodeling after reperfused myocardial infarction. J Am Coll Cardiol. 2010;55(12):1200–5.PubMedCrossRefGoogle Scholar
  152. 152.
    Kloner RA, Hale SL, Dai W, Gorman RC, Shuto T, Koomalsingh KJ, et al. Reduction of ischemia/reperfusion injury with bendavia, a mitochondria-targeting cytoprotective Peptide. J Am Heart Assoc. 2012;1(3):e001644.PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Shen X, Zheng S, Metreveli NS, Epstein PN. Protection of cardiac mitochondria by overexpression of MnSOD reduces diabetic cardiomyopathy. Diabetes. 2006;55(3):798–805.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences & Faculty of MedicineUniversity of ChileSantiagoChile
  2. 2.Cardiology Division, Department of Internal MedicineUT Southwestern Medical CenterDallasUSA
  3. 3.Department of Molecular BiologyUniversity of Texas, Southwestern Medical CenterDallasUSA
  4. 4.Department of Internal MedicineUniversity of Texas, Southwestern Medical CenterDallasUSA

Personalised recommendations