Advertisement

Enhanced Digital Signature Using RNS Digit Exponent Representation

  • Thomas Plantard
  • Jean-Marc RobertEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10064)

Abstract

Digital Signature Algorithm (DSA) involves modular exponentiation, of a public and known base by a random one-time exponent. In order to speed-up this operation, well-known methods take advantage of the memorization of base powers. However, due to the cost of the memory, to its small size and to the latency of access, previous research sought for minimization of the storage. In this paper, taking into account the modern processor features and the growing size of the cache memory, we improve the storage/efficiency trade-off, by using a RNS Digit exponent representation. We then propose algorithms for modular exponentiation. The storage is lower for equivalent complexities for modular exponentiation computation. The implementation performances show significant memory saving, up to 3 times for the largest NIST standardized key sizes compared to state of the art approaches.

Keywords

RNS Digital signature Modular exponentiation Memory storage Efficient software implementation 

References

  1. 1.
    The GNU Multiple Precision Arithmetic Library (GMP). http://gmplib.org/
  2. 2.
    Bosselaers, A., Govaerts, R., Vandewalle, J.: Comparison of three modular reduction functions. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 175–186. Springer, Heidelberg (1994). doi: 10.1007/3-540-48329-2_16 Google Scholar
  3. 3.
    Acting Secretary Cameron Kerry and USST/Director Patrick Gallagher: Digital Signature Standard (DSS). In: Federal Information Processing Standards Publications, FIPS PUB 186-4. NIST (2013)Google Scholar
  4. 4.
    ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 10–18. Springer, Heidelberg (1985). doi: 10.1007/3-540-39568-7_2 Google Scholar
  5. 5.
    Garner, H.L.: The residue number system. In: Proceedings of the Western Joint Computer Conference, pp. 146–153 (1959)Google Scholar
  6. 6.
    Gordon, D.M.: A survey of fast exponentiation methods. J. Algorithms 27(1), 129–146 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Gueron, S.: Efficient software implementations of modular exponentiation. J. Cryptogr. Eng. 2(1), 31–43 (2012)CrossRefGoogle Scholar
  8. 8.
    Hankerson, D., Hernandez, J., Menezes, A.: Software implementation of elliptic curve cryptography over binary fields. In: Koç, Ç.K., Paar, C. (eds.) CHES 2000. LNCS, vol. 1965, pp. 1–24. Springer, Heidelberg (2000). doi: 10.1007/3-540-44499-8_1 CrossRefGoogle Scholar
  9. 9.
    Knuth, D.E.: The Art of Computer Programming, Volume II: Seminumerical Algorithms, 3rd edn. Addison-Wesley, Boston (1998)zbMATHGoogle Scholar
  10. 10.
    Lim, C.H., Lee, P.J.: More flexible exponentiation with precomputation. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 95–107. Springer, Heidelberg (1994). doi: 10.1007/3-540-48658-5_11 Google Scholar
  11. 11.
    López-García, L., Dominguez Perez, L.J., Francisco Rodríguez-Henríquez, F.: A pairing-based blind signature e-voting scheme. Comput. J. 57(10), 1460–1471 (2014)CrossRefGoogle Scholar
  12. 12.
    Montgomery, P.: Modular multiplication without trial division. Math. Comput. 44(170), 519–521 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    U.S.D.C. Rebecca Blank and USST/Director Patrick Gallagher: Recommendation for key management. In: Computer Security, Part 1, Rev 3. NIST Special Publication 800-7, pp. 62–64. NIST (2012)Google Scholar
  14. 14.
    Svoboda, A.: The numerical system of residual classes in mathematical machines. In: IFIP Congress, pp. 419–421 (1959)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.CCISR, SCITUniversity of WollongongWollongongAustralia
  2. 2.Team DALIUniversité de Perpignan Via DomitiaPerpignanFrance
  3. 3.LIRMM, UMR 5506, Université Montpellier and CNRSMontpellierFrance

Personalised recommendations