Dictionary-Based Sentiment Analysis Applied to a Specific Domain

  • Laura CruzEmail author
  • José OchoaEmail author
  • Mathieu RocheEmail author
  • Pascal PonceletEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 656)


The web and social media have been growing exponentially in recent years. We now have access to documents bearing opinions expressed on a broad range of topics. This constitutes a rich resource for natural language processing tasks, particularly for sentiment analysis. Nevertheless, sentiment analysis is usually difficult because expressed sentiments are usually topic-oriented. In this paper, we propose to automatically construct a sentiment dictionary using relevant terms obtained from web pages for a specific domain. This dictionary is initially built by querying the web with a combination of opinion terms, as well as terms of the domain. In order to select only relevant terms we apply two measures \(\textit{AcroDef}_{\textit{MI}3}\) and TrueSkill. Experiments conducted on different domains highlight that our automatic approach performs better for specific cases.


Text mining Web mining Sentiment analysis 



This work has been supported and funded by FONDECYT and SONGES project ( (FEDER and Occitanie).


  1. 1.
    Amine, A., Hamou, R.M., Simonet, M.: Detecting opinions in tweets. Int. J. Data Min. Emerg. Technol. 3(1), 23–32 (2013)CrossRefGoogle Scholar
  2. 2.
    Blitzer, J., Dredze, M., Pereira, F.: Biographies, bollywood, boomboxes and blenders: domain adaptation for sentiment classification. In: Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics (ACL 2007), pp. 187–205 (2007)Google Scholar
  3. 3.
    Church, K.W., Hanks, P.: Word association norms, mutual information, and lexicography. Comput. Linguist. 16, 22–29 (1990)Google Scholar
  4. 4.
    Daille, B.: Study, implementation of combined techniques for automatic extraction of terminology. In: Klavans, J.L., Resnik, P. (eds.) The Balancing Act: Combining Statistical and Symbolic Approaches to Language, pp. 49–66. MIT Press, Cambridge (1996)Google Scholar
  5. 5.
    Downey, D., Broadhead, M., Etzioni, O.: Locating complex named entities in web text. In: Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI 2007), pp. 2733–2739 (2007)Google Scholar
  6. 6.
    Duthil, B., Trousset, F., Roche, M., Dray, G., Plantié, M., Montmain, J., Poncelet, P.: Locating complex named entities in web text. In: Proceedings of the 22nd International Conference on Database and Expert Systems Applications (DEXA 2011), pp. 457–465 (2007)Google Scholar
  7. 7.
    Guillet, F., Hamilton, H.J.: Quality Measures in Data Mining. Springer, Heidelberg (2007)CrossRefzbMATHGoogle Scholar
  8. 8.
    Guo, S., Sanner, S., Graepel, T., Buntine, W.: Score-based Bayesian skill learning. In: Flach, P.A., Bie, T., Cristianini, N. (eds.) ECML PKDD 2012. LNCS (LNAI), vol. 7523, pp. 106–121. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-33460-3_12 CrossRefGoogle Scholar
  9. 9.
    Harb, A., Plantie, M., Dray, G., Roche, M., Trousset, F., Poncelet, P.: Web opinion mining: how to extract opinions from blogs? In: Proceedings of the 5th International Conference on Soft Computing as Transdisciplinary Science and Technology (CSTST 2008), pp. 211–217 (2008)Google Scholar
  10. 10.
    Herbrich, R., Minka, T., Graepel, T.: TrueSkill(TM): a Bayesian skill rating system. In: Advances in Neural Information Processing Systems, vol. 20, pp. 569–576. MIT Press (2007)Google Scholar
  11. 11.
    Marrese-Taylor, E., Velásquez, J.D., Bravo-Marquez, F., Matsuo, Y.: Identifying customer preferences about tourism products using an aspect-based opinion mining approach. Procedia Comput. Sci. 22, 182–191 (2013)CrossRefGoogle Scholar
  12. 12.
    Pang, B., Lee, L.: A sentimental education: Sentiment analysis using subjectivity summarization based on minimum cuts. In: Proceedings of the ACL, pp. 271–278 (2004)Google Scholar
  13. 13.
    Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up?: sentiment classification using machine learning techniques. In: Proceedings of the ACL 2002 Conference on Empirical Methods in Natural Language Processing, EMNLP 2002, vol. 10, pp. 79–86. Association for Computational Linguistics, Stroudsburg (2002)Google Scholar
  14. 14.
    Roche, M., Prince, V.: AcroDef: a quality measure for discriminating expansions of ambiguous acronyms. In: Kokinov, B., Richardson, D.C., Roth-Berghofer, T.R., Vieu, L. (eds.) CONTEXT 2007. LNCS (LNAI), vol. 4635, pp. 411–424. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-74255-5_31 CrossRefGoogle Scholar
  15. 15.
    Roche, M., Prince, V.: A web-mining approach to disambiguate biomedical acronym expansions. Informatica (Slovenia) 34(2), 243–253 (2010)Google Scholar
  16. 16.
    Turney, P.D.: Thumbs up or thumbs down?: semantic orientation applied to unsupervised classification of reviews. In: Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, ACL 2002, pp. 417–424. Association for Computational Linguistics, Stroudsburg (2002)Google Scholar
  17. 17.
    Varghese, R., Jayasree, M.: Aspect based sentiment analysis using support vector machine classifier. In: 2013 International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 1581–1586, August 2013Google Scholar
  18. 18.
    Vivaldi, J., Màrquez, L., Rodríguez, H.: Improving term extraction by system combination using boosting. In: Raedt, L., Flach, P. (eds.) ECML 2001. LNCS (LNAI), vol. 2167, pp. 515–526. Springer, Heidelberg (2001). doi: 10.1007/3-540-44795-4_44 CrossRefGoogle Scholar
  19. 19.
    Wang, G., Araki, K.: Modifying so-PMI for Japanese weblog opinion mining by using a balancing factor and detecting neutral expressions. In: Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics (NAACL-Short 2007), pp. 189–192 (2007)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Universidad Nacional de San AgustínArequipaPeru
  2. 2.Universidad Católica San PabloArequipaPeru
  3. 3.TETIS (CIRAD, CNRS, AgroParisTech, Irstea)ParisFrance
  4. 4.LIRMM (CNRS, Univ. Montpellier)MontpellierFrance

Personalised recommendations