Advertisement

A Scoped Review of the Potential for Supportive Virtual Coaches as Adjuncts to Self-guided Web-Based Interventions

  • Mark R. ScholtenEmail author
  • Saskia M. Kelders
  • Julia E. W. C. van Gemert-Pijnen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10171)

Abstract

This study aimed to explore supportive capabilities of VAs with the potential benefit in mind that users of self-guided eHealth interventions could be better supported. Spontaneous empathy and the explicitly expressed intention of non-responsive VAs to deliver user support is likely capable to engage and motivate users. Responsive VAs have even larger potential. However, they are more costly to realize and have a higher risk of failure. Effective user frustration detection and mitigation by Responsive VAs has been empirically demonstrated, but so far within artificial contexts. Altogether it makes sense to further explore the option to add VAs as adjuncts to self-guided eHealth interventions a potential remedy to low adherence.

Keywords

Virtual agent Embodied conversational agent Virtual human Persuasive technology ehealth 

References

  1. 1.
    Bickmore, T., Gruber, A., Picard, R.: Establishing the computer-patient working alliance in automated health behavior change interventions. Patient Educ. Couns. 59(1), 21–30 (2005). doi: 10.1016/j.pec.2004.09.00 CrossRefGoogle Scholar
  2. 2.
    Pham, M.T., Rajic, A., Greig, J.D., Sargeant, J.M., Papadopoulos, A., McEwen, S.A.: A scoping review of scoping reviews: advancing the approach and enhancing the consistency. Res. Synth. Methods 5(4), 371–385 (2014). doi: 10.1002/jrsm.1123 CrossRefGoogle Scholar
  3. 3.
    Jordine, K., Wilson, D-M., Sakpal, R.: What is age’s affect in collaborative learning environments? In: Proceedings of the International Conference on Universal Access in Human-Computer Interaction (2013)Google Scholar
  4. 4.
    Ieronutti, L., Chittaro, L.: Employing virtual humans for education and training in X3D/VRML worlds. Comput. Educ. 49(1), 93–109 (2007). doi: 10.1016/j.compedu.2005.06.007 CrossRefGoogle Scholar
  5. 5.
    Hofmann, H., Tobisch, V., Ehrlich, U., Berton, A.: Evaluation of speech-based HMI concepts for information exchange tasks: a driving simulator study. Comput. Speech Lang. 33(1), 109–135 (2015). doi: 10.1016/j.csl.2015.01.005 CrossRefGoogle Scholar
  6. 6.
    Novick, D., Gris, I.: Building rapport between human and ECA: a pilot study. In: Kurosu, M. (ed.) HCI 2014. LNCS, vol. 8511, pp. 472–480. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-07230-2_45 Google Scholar
  7. 7.
    Bickmore, T.W., Vardoulakis, L.M.P., Schulman, D.: Tinker: a relational agent museum guide. Auton. Agent. Multi-Agent Syst. 27(2), 254–276 (2013). doi: 10.1007/s10458-012-9216-7 CrossRefGoogle Scholar
  8. 8.
    Amini, R., Lisetti, C., Yasavur, U., Rishe, N.: On-demand virtual health counselor for delivering behavior-change health interventions. In: 2013 IEEE International Conference on Proceedings of the Healthcare Informatics (ICHI) (2013)Google Scholar
  9. 9.
    Apostol, S., Soica, O., Manasia, L., Stefan, C.: Virtual pedagogical agents in the context of virtual learning environments: framework and theoretical models. Elearn. Softw. Educ. (2), 531–536 (2013) Google Scholar
  10. 10.
    Schulman, D., Bickmore, T.: Modeling behavioral manifestations of coordination and rapport over multiple conversations. In: Proceedings of the International Conference on Intelligent Virtual Agents (2010)Google Scholar
  11. 11.
    Mori, M., MacDorman, K.F., Kageki, N.: The uncanny valley [from the field]. IEEE Robot. Autom. Mag. 19(2), 98–100 (2012)CrossRefGoogle Scholar
  12. 12.
    Nass, C., Moon, Y.: Machines and mindlessness: social responses to computers. J. Soc. Issues 56(1), 81–103 (2000). doi: 10.1111/0022-4537.00153 CrossRefGoogle Scholar
  13. 13.
    Nass, C.I., Brave, S.: Wired For Speech: How Voice Activates and Advances The Human-Computer Relationship. MIT press, Cambridge (2005). 0262140926Google Scholar
  14. 14.
    Norman, D.A.: Emotional Design: Why we Love (or Hate) Everyday Things. Basic Books, New York (2005). 0465051367Google Scholar
  15. 15.
    Reeves, B., Nass, C.: How People Treat Computers, Television, and New Media Like Real People and Places. CSLI Publications and Cambridge University Press Cambridge, Cambridge (1996)Google Scholar
  16. 16.
    Conrad, F.G., Schober, M.F., Jans, M., Orlowski, R.A., Nielsen, D., Levenstein, R.: Comprehension and engagement in survey interviews with virtual agents. Front. Psychol. 6 (2015). doi: 10.3389/Fpsyg.2015.01578, Artn. 1578
  17. 17.
    Veletsianos, G., Russell, G.S.: What do learners and pedagogical agents discuss when given opportunities for open-ended dialogue? J. Educ. Comput. Res. 48(3), 381–401 (2013). doi: 10.2190/Ec.48.3.E CrossRefGoogle Scholar
  18. 18.
    Weizenbaum, J.: ELIZA—a computer program for the study of natural language communication between man and machine. Commun. ACM 9(1), 36–45 (1966)CrossRefGoogle Scholar
  19. 19.
    Baylor, A.L., Ryu, J., Shen, E.: The effects of pedagogical agent voice and animation on learning, motivation and perceived persona. In: Proceedings of the World conference on educational multimedia, hypermedia and telecommunications (2003)Google Scholar
  20. 20.
    Cowell, Andrew, J., Stanney, Kay, M.: Embodiment and interaction guidelines for designing credible, trustworthy embodied conversational agents. In: Rist, T., Aylett, Ruth, S., Ballin, D., Rickel, J. (eds.) IVA 2003. LNCS (LNAI), vol. 2792, pp. 301–309. Springer, Heidelberg (2003). doi: 10.1007/978-3-540-39396-2_50 CrossRefGoogle Scholar
  21. 21.
    Kim, C.M., Baylor, A.L.: A virtual change agent: Motivating pre-service teachers to integrate technology in their future classrooms. Educ. Technol. Soc. 11(2), 309–321 (2008)Google Scholar
  22. 22.
    Krämer, N.C., von der Pütten, A., Eimler, S.: Human-agent and human-robot interaction theory: similarities to and differences from human-human interaction. In: Zacarias, M., de Oliveira, J.V. (eds.) Human-Computer Interaction: The Agency Perspective. Studies in Computational Intelligence, vol. 396, pp. 215–240. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  23. 23.
    Lester, J.C., Converse, S.A., Kahler, S.E., Barlow, S.T., Stone, B.A., Bhogal, R.S.: The persona effect: affective impact of animated pedagogical agents. In: Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems (1997)Google Scholar
  24. 24.
    Lisetti, C., Amini, R., Yasavur, U.: Now all together: overview of virtual health assistants emulating face-to-face health interview experience. KI-Künstliche Intelligenz 29(2), 161–172 (2015)CrossRefGoogle Scholar
  25. 25.
    Mayer, R.E.: Cognitive theory of multimedia learning. In: The Cambridge Handbook of Multimedia Learning, p. 43 (2014)Google Scholar
  26. 26.
    Rajan, S, Craig, S.D., Gholson, B., Person, N.K., Graesser, A.C., Tutoring Research Group.: AutoTutor: incorporating back-channel feedback and other human-like conversational behaviors into an intelligent tutoring system. Int. J. Speech Technol., 4(2), 117–126 (2001)Google Scholar
  27. 27.
    Rosenberg-Kima, R.B., Baylor, A.L., Plant, E.A., Doerr, C.E.: The importance of interface agent visual presence: voice alone is less effective in impacting young women’s attitudes toward engineering. In: kort, y, IJsselsteijn, W., Midden, C., Eggen, B., Fogg, B.J. (eds.) PERSUASIVE 2007. LNCS, vol. 4744, pp. 214–222. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-77006-0_27 CrossRefGoogle Scholar
  28. 28.
    Sproull, L., Subramani, M., Kiesler, S., Walker, J.H., Waters, K.: When the interface is a face. Hum. Comput. Interact. 11(2), 97–124 (1996). doi: 10.1207/s15327051hci1102_1 CrossRefGoogle Scholar
  29. 29.
    Zanbaka, C., Ulinski, A., Goolkasian, P., Hodges, L.F.: Effects of virtual human presence on task performance. In: Proceedings of the International Conference on Artificial Reality and Telexistence 2004 (2004)Google Scholar
  30. 30.
    Bickmore, T.W., Picard, R.W.: Establishing and maintaining long-term human-computer relationships. ACM Trans. Comput. Hum. Interac. (TOCHI) 12(2), 293–327 (2005)CrossRefGoogle Scholar
  31. 31.
    Creed, C., Beale, R., Cowan, B.: The impact of an embodied agent’s emotional expressions over multiple interactions. Interact. Comput. 27(2), 172–188 (2015). doi: 10.1093/iwc/iwt064 CrossRefGoogle Scholar
  32. 32.
    Gratch, J., Wang, N., Gerten, J., Fast, E., Duffy, R.: Creating rapport with virtual agents. In: Pelachaud, C., Martin, J.C., André, E., Chollet, G., Karpouzis, K., Pelé, D. (eds.) IVA 2007. LNCS (LNAI), vol. 4722, pp. 125–138. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-74997-4_12 CrossRefGoogle Scholar
  33. 33.
    Gulz, A.: Benefits of virtual characters in computer based learning environments: claims and evidence. Int. J. Artif. Intell. Educ. 14(4), 313–334 (2004)Google Scholar
  34. 34.
    Kang, S.H., Gratch, J., Wang, N., Watt, J.H.: Does the contingency of agents’ nonverbal feedback affect users’ social anxiety? In: Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems, vol. 1 (2008)Google Scholar
  35. 35.
    Kramer, N.C., Eimler, S., von der Putten, A., Payr, S.: Theory of companions: what can theoretical models contribute to applications and understanding of human-robot interaction? Appl. Artif. Intell. 25(6), 474–502 (2011). doi: 10.1080/08839514.2011.587153 CrossRefGoogle Scholar
  36. 36.
    Pütten, A.M., Krämer, N.C., Gratch, J.: How our personality shapes our interactions with virtual characters - implications for research and development. In: Allbeck, J., Badler, N., Bickmore, T., Pelachaud, C., Safonova, A. (eds.) IVA 2010. LNCS, vol. 6356, pp. 208–221. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-15892-6_23 CrossRefGoogle Scholar
  37. 37.
    Horvath, A.O., Greenberg, L.S.: Development and validation of the working alliance inventory. J. Couns. Psychol. 36(2), 223–233 (1989). doi: 10.1037/0022-0167.36.2.223 CrossRefGoogle Scholar
  38. 38.
    Baylor, A.L., Rosenberg-Kima, R.B., Plant, E.A.: Interface agents as social models: the impact of appearance on females’ attitude toward engineering. In: Proceedings of the CHI 2006 Extended Abstracts on Human Factors in Computing Systems (2006)Google Scholar
  39. 39.
    Berry, D.C., Butler, L.T., de Rosis, F.: Evaluating a realistic agent in an advice-giving task. Int. J. Hum Comput Stud. 63(3), 304–327 (2005). doi: 10.1016/j.ijhcs.2005.03.006 CrossRefGoogle Scholar
  40. 40.
    D’Mello, S., Picard, R., Graesser, A.: Towards an affect-sensitive autotutor. IEEE Intell. Syst. 22(4), 53–61 (2007)CrossRefGoogle Scholar
  41. 41.
    D’Mello, S., Olney, A., Williams, C., Hays, P.: Gaze tutor: a gaze-reactive intelligent tutoring system. Int. J. Hum. Comput. Stud. 70(5), 377–398 (2012). doi: 10.1016/j.ijhcs.2012.01.004 CrossRefGoogle Scholar
  42. 42.
    Doirado, E., Martinho, C.: I mean it!: detecting user intentions to create believable behaviour for virtual agents in games. In: Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems, vol. 1 (2010)Google Scholar
  43. 43.
    Lisetti, C., Amini, R., Yasavur, U., Rishe, N.: I can help you change! an empathic virtual agent delivers behavior change health interventions. ACM Trans. Manag. Inf. Syst. (TMIS) 4(4), 19 (2013)Google Scholar
  44. 44.
    Picard, R.W., Picard, R.: Affective Computing. MIT Press, Cambridge (1997)CrossRefGoogle Scholar
  45. 45.
    Schroeder, N.L., Adesope, O.O., Gilbert, R.B.: How effective are pedagogical agents for learning? a meta-analytic review. J. Educ. Comput. Res. 49(1), 1–39 (2013)CrossRefGoogle Scholar
  46. 46.
    Brave, S., Nass, C., Hutchinson, K.: Computers that are care: investigating the effects of orientation of emotion exhibited by an embodied computer agent. Int. J. Hum. Comput. Stud. 62(2), 161–178 (2005). doi: 10.1016/j.ijhcs.2004.11.002 CrossRefGoogle Scholar
  47. 47.
    Klein, J., Moon, Y., Picard, R.W.: This computer responds to user frustration: theory, design, and results. Interact. Comput. 14(2), 119–140 (2002)CrossRefGoogle Scholar
  48. 48.
    Moreno, R.: Software agents in multimedia: an experimental study of their contributions to students’ learning. In: Proceedings of Human-Computer Interaction, pp. 275–277 (2001)Google Scholar
  49. 49.
    Beale, R., Creed, C.: Affective interaction: how emotional agents affect users. Int. J. Hum Comput Stud. 67(9), 755–776 (2009). doi: 10.1016/j.ijhcs.2009.05.001 CrossRefGoogle Scholar
  50. 50.
    Dehn, D.M., van Mulken, S.: The impact of animated interface agents: a review of empirical research. Int. J. Hum Comput Stud. 52(1), 1–22 (2000). doi: 10.1006/ijhc.1999.0325 CrossRefGoogle Scholar
  51. 51.
    Hartholt, A., Traum, D., Marsella, S.C., Shapiro, A., Stratou, G., Leuski, A., Morency, L.P., Gratch, J.: All together now. In: Proceedings of the International Workshop on Intelligent Virtual Agents (2013)Google Scholar
  52. 52.
    Veletsianos, G., Miller, C., Doering, A.: Enali: a research and design framework for virtual characters and pedagogical agents. J. Educ. Comput. Res. 41(2), 171–194 (2009)CrossRefGoogle Scholar
  53. 53.
    Veletsianos, G., Russell, G.S.: Pedagogical agents. In: Spector, J.M., Merrill, M.D., Elen, J., Bishop, M.J. (eds.) Handbook of Research on Educational Communications and Technology, pp. 759–769. Springer, New York (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Mark R. Scholten
    • 1
    Email author
  • Saskia M. Kelders
    • 1
  • Julia E. W. C. van Gemert-Pijnen
    • 1
  1. 1.Department of Psychology, Health and Technology, Center for eHealth and Wellbeing ResearchUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations