Advertisement

Applications of Apheresis Devices in Processing Bone Marrow Grafts

  • Gerda C. LeitnerEmail author
Chapter
Part of the Advances and Controversies in Hematopoietic Transplantation and Cell Therapy book series (ACHTCT)

Abstract

ABO blood groups antigens are inherited independently from the human leukocyte antigen (HLA) system. Thus, up to 50% of allogeneic hematopoietic cell transplantations (HCT) are performed across the ABO blood group barrier. While peripheral blood hematopoietic progenitor cell (HPC) infusion can be performed mostly without any ABO-related complications, the infusion of bone marrow (BM) requires the implementation of safety precautions to avoid acute immune-mediated hemolysis during transplantation. Bone marrow processing techniques to remove either red blood cells (RBCs), or plasma, have been implemented decades ago. As autologous BM grafts have to be cryopreserved and stored in liquid nitrogen or its vapor phase, volume reduction before freezing is a pre-requirement. Over the last decades, various apheresis devices and protocols were developed for this purpose, partly using sedimentation agents or density gradient centrifugation with density gradient reagents to optimize processing results. These substances bear a potential risk for the BM cells and the recipients. In the beginning of the 1990s, apheresis technology was substantially improved. The latest innovations in this field were the Cobe Spectra (Terumo BCT) and Spectra Optia (Terumo BCT). With both devices, optimal results with respect to volume and RBC reduction and progenitor cell and mononuclear cell (MNC) recovery can be achieved. The Amicus (Fresenius) device reveals similar results but lacks a dedicated program for BM processing. Therefore, it should only be used by operators and physicians who are highly experienced with this device. BM collections from very small children may not fulfill the requirements for BM processing by apheresis in terms of minimal BM and RBC volume. In these cases, either RBC units can be added or a special device for cord blood processing (Biosafe Sepax device) can be used. An important issue for optimal progenitor cell and MNC selection by apheresis is a short transit time from the collection to the processing facility. Overnight storages should take place in a refrigerator at 4 °C ± 2 °C.

Keywords

Bone marrow transplantation ABO blood group barrier Apheresis technology Red blood cell depletion Volume reduction Plasma depletion Cryopreservation of bone marrow collections Cell separators progenitor cell recovery 

References

  1. Anasetti C, Logan BR, Lee SJ, Waller EK, Weisdorf DJ, Wingard JR et al (2012) Peripheral-blood stem cells versus bone marrow from unrelated donors. New Engl J Med 367(16):1487–1496CrossRefGoogle Scholar
  2. Babic A, Regan D (2014) Umbilical cord blood banking. American Association of Blood Banks (AABB), Bethesda. 729 pGoogle Scholar
  3. Barnes DWH, Loutit JF (1955) Radiation recovery factor and preservation by the Polge Smith Parkes Parkes technique. J Natl Cancer Inst 15:901–905PubMedGoogle Scholar
  4. Berz D, McCormack EM, Winer ES, Colvin GA, Quesenberry PJ (2007) Cryopreservation of hematopoietic stem cells. Am J Hematol 82(6):463–472CrossRefGoogle Scholar
  5. Booth GS, Gehrie EA, Bolan CD, Savani BN (2013) Clinical guide to ABO-incompatible allogeneic stem cell transplantation. Biol Blood Marrow Transplant 19(8):1152–1158CrossRefGoogle Scholar
  6. Curcioli AC, de Carvalho EC (2010) Infusion of hematopoietic stem cells: types, characteristics, adverse and transfusion reactions and the implications for nursing. Rev Lat Am Enfermagem 18(4):716–724CrossRefGoogle Scholar
  7. Daniele N, Scerpa MC, Rossi C, Lanti A, Adorno G, Isacchi G et al (2014) The processing of stem cell concentrates from the bone marrow in ABO-incompatible transplants: how and when. Blood Transfus 12(2):150–158PubMedPubMedCentralGoogle Scholar
  8. Daniel-Johnson J, Schwartz J (2011) How do I approach ABO-incompatible hematopoietic progenitor cell transplantation? Transfusion 51(6):1143–1149CrossRefGoogle Scholar
  9. Davis-Sproul J, Haley NR, McMannis J (2008) Collecting and processing marrow products for transplantation. 16th edition. S Karger AG, Basel. 765 pGoogle Scholar
  10. Falkenburg JH, Schaafsma MR, Jansen J, Brand A, Goselink HM, Zwaan FE et al (1985) Recovery of hematopoiesis after blood-group-incompatible bone marrow transplantation with red-blood-cell-depleted grafts. Transplantation 39(5):514–520CrossRefGoogle Scholar
  11. Gajewski JL, Johnson VV, Sandler SG, Sayegh A, Klumpp TR (2008) A review of transfusion practice before, during, and after hematopoietic progenitor cell transplantation. Blood 112(8):3036–3047CrossRefGoogle Scholar
  12. Gale RP, Feig S, Ho W, Falk P, Rippee C, Sparkes R (1977) ABO blood group system and bone marrow transplantation. Blood 50(2):185–194CrossRefGoogle Scholar
  13. Gilmore MJ, Prentice HG, Blacklock HA, Janossy G, Hoffbrand AV (1982) A technique for rapid isolation of bone marrow mononuclear cells using Ficoll-Metrizoate and the IBM 2991 blood cell processor. Br J Hematol 50(4):619–626CrossRefGoogle Scholar
  14. Gonzalez-Campos J, Carmona-Gonzalez M, Rodriguez-Fernandez JM, Mellado-Damas N, de Luis-Navarro J (2000) Bone marrow processing using the fenwal CS-3000 plus blood cell separator: results of 99 procedures. J Hematother Stem Cell Res 9(1):83–88CrossRefGoogle Scholar
  15. Guttridge MG, Sidders C, Booth-Davey E, Pamphilon D, Watt SM (2006) Factors affecting volume reduction and red blood cell depletion of bone marrow on the COBE Spectra cell separator before haematopoietic stem cell transplantation. Bone Marrow Transplant 38(3):175–181CrossRefGoogle Scholar
  16. Guttridge MG, Bailey C, Sidders C, Nichols J, Bromham J, Watt SM (2016) Human bone marrow processing using a new continuous-flow cell separation device. Transfusion 56(4):899–904CrossRefGoogle Scholar
  17. Haemotec. Biosafe Sepax Automated Cell Processing. Operators manualGoogle Scholar
  18. Henig I, Zuckerman T (2014) Hematopoietic stem cell transplantation-50 years of evolution and future perspectives. Rambam Maimonid Med J 5(4):e0028CrossRefGoogle Scholar
  19. Hester JP, Rondon G, Huh YO, Lauppe MJ, Champlin RE, Deisseroth AB (1995) Principles of bone marrow processing and progenitor cell/mononuclear cell concentrate collection in a continuous flow blood cell separation system. J Hematother 4(4):299–306CrossRefGoogle Scholar
  20. Hunt CJ (2011) Cryopreservation of human stem cells for clinical application: a review. Transfus Med Hemother 38(2):107–123CrossRefGoogle Scholar
  21. Karafin MS, Blagg L, Tobian AA, King KE, Ness PM, Savage WJ (2012) ABO antibody titers are not predictive of hemolytic reactions due to plasma-incompatible platelet transfusions. Transfusion 52(10):2087–2093CrossRefGoogle Scholar
  22. Koristek Z, Mayer J (1999) Bone marrow processing for transplantation using the COBE spectra cell separator. J Hematother Stem Cell Res 8(4):443–448CrossRefGoogle Scholar
  23. Leemhuis T, Padley D, Keever-Taylor C, Niederwieser D, Teshima T, Lanza F et al (2014) Essential requirements for setting up a stem cell processing laboratory. Bone Marrow Transplant 49(8):1098–1105CrossRefGoogle Scholar
  24. Leitner GC, Kolovratova V, Horvath M, Worel N (2015) Granulocyte collection using a novel apheresis system eases the procedure and provides concentrates of high quality. Transfusion 55(5):991–995CrossRefGoogle Scholar
  25. Linch DC, Knott LJ, Patterson KG, Cowan DA, Harper PG (1982) Bone marrow processing and cryopreservation. J Clin Pathol 35(2):186–190CrossRefGoogle Scholar
  26. Mielcarek M, Leisenring W, Torok-Storb B, Storb R (2000) Graft-versus-host disease and donor-directed hemagglutinin titers after ABO-mismatched related and unrelated marrow allografts: evidence for a graft-versus-plasma cell effect. Blood 96(3):1150–1156CrossRefGoogle Scholar
  27. Nussbaumer W, Schwaighofer H, Gratwohl A, Kilga S, Schonitzer D, Nachbaur D et al (1995) Transfusion of donor-type red cells as a single preparative treatment for bone marrow transplants with major ABO incompatibility. Transfusion 35(7):592–595CrossRefGoogle Scholar
  28. Posel C, Moller K, Frohlich W, Schulz I, Boltze J, Wagner DC (2012) Density gradient centrifugation compromises bone marrow mononuclear cell yield. PLoS One 7(12):e50293CrossRefGoogle Scholar
  29. Rabitsch W, Knobl P, Greinix H, Prinz E, Kalhs P, Horl WH et al (2003) Removal of persisting isohaemagglutinins with Ig-Therasorb immunoadsorption after major ABO-incompatible non-myeloablative allogeneic haematopoietic stem cell transplantation. Nephrol Dial Transplant 18(11):2405–2408CrossRefGoogle Scholar
  30. Roback JD, Grossman BJ, Harris T, Hillyer CD (2011) American Association of Blood BanksGoogle Scholar
  31. Rowley SD (1992) Hematopoietic stem cell cryopreservation: a review of current techniques. J Hematother 1(3):233–250CrossRefGoogle Scholar
  32. Rowley SD (2001) Hematopoietic stem cell transplantation between red cell incompatible donor-recipient pairs. Bone Marrow Transplant 28(4):315–321CrossRefGoogle Scholar
  33. Rowley SD, Liang PS, Ulz L (2000) Transplantation of ABO-incompatible bone marrow and peripheral blood stem cell components. Bone Marrow Transplant 26(7):749–757CrossRefGoogle Scholar
  34. Scerpa MC, Daniele N, Landi F, Caniglia M, Cometa AM, Ciammetti C et al (2011) Automated washing of human progenitor cells: evaluation of apoptosis and cell necrosis. Transfus Med 21(6):402–407CrossRefGoogle Scholar
  35. Sorg N, Poppe C, Bunos M, Wingenfeld E, Hummer C, Kramer A et al (2015) Red blood cell depletion from bone marrow and peripheral blood buffy coat: a comparison of two new and three established technologies. Transfusion 55(6):1275–1282CrossRefGoogle Scholar
  36. TerumoBCT. Cobe Spectra Apheresis Systems. Technical guideGoogle Scholar
  37. TerumoBCT. Spectra Optia® Apheresis System Protocols. Technical guideGoogle Scholar
  38. Warkentin PI, Hilden JM, Kersey JH, Ramsay NK, McCullough J (1985) Transplantation of major ABO-incompatible bone marrow depleted of red cells by hydroxyethyl starch. Vox Sang 48(2):89–104CrossRefGoogle Scholar
  39. Wells JR, Sullivan A, Cline MJ (1979) A technique for the separation and cryopreservation of myeloid stem cells from human bone marrow. Cryobiology 16(3):201–210CrossRefGoogle Scholar
  40. Witt V, Beiglbock E, Ritter R, Wurth M, Peters C, Ladenstein R et al (2007) Performance of a new separator system for routine autologous hematopoietic progenitor cell collection in small children. J Clin Apher 22(6):306–313CrossRefGoogle Scholar
  41. Witt V, Beiglbock E, Fritsch G (2011) Bone marrow processing with the AMICUS separator system. J Clin Apher 26(4):195–199CrossRefGoogle Scholar
  42. Worel N (2016) ABO-mismatched allogeneic hematopoietic stem cell transplantation. Transfus Med Hemother 43(1):3–12CrossRefGoogle Scholar
  43. Worel N, Buser A, Greinix HT, Hagglund H, Navarro W, Pulsipher MA et al (2015) Suitability criteria for adult related donors: a consensus statement from the worldwide network for blood and marrow transplantation standing committee on donor issues. Biol Blood Marrow Transplant 21(12):2052–2060CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department for Blood Group Serology and Transfusion MedicineMedical University ViennaViennaAustria

Personalised recommendations