Advertisement

Emerging Applications of Whispering Gallery Mode Photonic Resonators

  • C. CiminelliEmail author
  • G. Brunetti
  • F. Dell’Olio
  • F. Innone
  • D. Conteduca
  • M. N. Armenise
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 429)

Abstract

Whispering Gallery Mode photonic resonators are emerging as key building blocks in many application fields especially because their resonant frequency is very sensitive to the variation of any physical or geometrical parameter. The basic properties and the applications of these resonators are discussed in this paper, with a specific attention to three very important application fields, i.e. Space, health-care, and environment monitoring.

Keywords

Integrated photonics Photonic resonators Gyroscopes Biosensors 

References

  1. 1.
    Vahala, K.J.: Optical microcavities. Nature 424, 836–846 (2003)CrossRefGoogle Scholar
  2. 2.
    Savchenkov, A.A., Matsko, A.B., Ilchenko, V.S., Maleki, L.: Optical resonators with ten million finesse. Opt. Express 15, 6768–6773 (2007)CrossRefGoogle Scholar
  3. 3.
    Lee, H., Chen, T., Li, J., Yang, K.Y., Jeon, S., Painter, O., Vahala, K.J.: Chemically etched ultrahigh-Q wedge-resonator on a silicon chip. Nat. Photonics 6, 369–373 (2012)CrossRefGoogle Scholar
  4. 4.
    Vernooy, D.W., Ilchenko, V.S., Mabuchi, H., Streed, E.W., Kimble, H.J.: High-Q measurements of fused-silica microspheres in the near infrared. Opt. Lett. 23, 247–249 (1998)CrossRefGoogle Scholar
  5. 5.
    Armani, D.K., Kippenberg, T.J., Spillane, S.M., Vahala, K.J.: Ultra-high-Q toroid microcavity on a chip. Nature 421, 925–928 (2003)CrossRefGoogle Scholar
  6. 6.
    Ciminelli, C., Dell’Olio F., Campanella C. E., Armenise M.N.: Numerical and experimental investigation of an optical high-Q spiral resonator gyroscope. Proceedings of ICTON 2012 (2012)Google Scholar
  7. 7.
    Spencer, D.T., Bauters, J.F., Heck, M.J., Bowers, J.E.: Integrated waveguide coupled Si3N4 resonators in the ultrahigh-Q regime. Optica 1, 153–157 (2014)CrossRefGoogle Scholar
  8. 8.
    Piels, M., Bauters, J.F., Davenport, M.L., Heck, M.J.R., Bowers, J.E.: Low-loss silicon nitride AWG demultiplexer heterogeneously integrated with hybrid III-V/silicon photodetectors. J. Lightwave Technol. 32, 817–823 (2014)CrossRefGoogle Scholar
  9. 9.
    D’Agostino, D., Carnicella, G., Ciminelli, C., Thijs, P., Veldhoven, P.J., Ambrosius, H., Smit, M.: Low-loss passive waveguides in a generic InP foundry process via local diffusion of zinc. Opt. Express 23, 25143–25157 (2015)CrossRefGoogle Scholar
  10. 10.
    Ciminelli, C., D’Agostino, D., Carnicella, G., Dell’Olio, F., Conteduca, D., Ambrosius, H.P.M.M., Smit, M.K., Armenise, M.N.: A high-Q InP resonant angular velocity sensor for a monolithically integrated optical gyroscope. IEEE Photonics J. 8, 6800418 (2016)CrossRefGoogle Scholar
  11. 11.
    Ciminelli C., Campanella C.E., Armenise M.N.: Optical rotation sensor as well as method of manufacturing an optical rotation sensor. European Patent EP056933 (2013)Google Scholar
  12. 12.
    Ciminelli C., Innone F., Brunetti G., Conteduca D., Dell’Olio F., Tatoli T., Armenise M.N.: Rigorous model for the design of ultra-high Q-factor resonant cavities. ICTON 2016 (2016)Google Scholar
  13. 13.
    Gao, G., Zhang, Y., Zhang, H., Wang, Y., Huang, Q., Xia, J.: Air-mode photonic crystal ring resonator on silicon-on-insulator. Sci. Reports 6, 19999 (2016)CrossRefGoogle Scholar
  14. 14.
    Kang Y.M.: In-line microring reflector for photonic applications. Ph.D Thesis in Electrical and Computer Engineering, University of Illinois at Urbana-Champaign (2013)Google Scholar
  15. 15.
    Bauters, J.F., Heck, M.J.R., John, D.D., Barton, J.S., Bruinink, C.M., Leinse, A., Heideman, R.G., Blumenthal, D.J., Bowers, J.E.: Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding. Opt. Express 19, 24090–24101 (2011)CrossRefGoogle Scholar
  16. 16.
    Ciminelli, C., Dell’Olio, F., Campanella, C.E., Armenise, M.N.: Photonic technologies for angular velocity sensing. Adv. Opt. Photonics 2, 370–404 (2010)Google Scholar
  17. 17.
    Dell’Olio, F., Tatoli, T., Ciminelli, C., Armenise, M.N.: Recent advances in miniaturized optical gyroscopes. J. Eur. Opt. Soc. (Rapid Publications) 9 (2014)Google Scholar
  18. 18.
    Ciminelli, C., Dell’Olio, F., Armenise, M.N.: Photonics in Space: Advance Devices and Systems. World Scientific (2016)Google Scholar
  19. 19.
    Papp, S.B., Beha, K., Del’Haye, P., Quinlan, F., Lee, H., Vahala, K.J., Diddams, S.A.: Microresonator frequency comb optical clock. Optics 1, 10–14 (2014)Google Scholar
  20. 20.
    Wang, L., Chang, L., Volet, N., Pfeiffer, M.H., Zervas, M., Guo, H., Kippenberg, T.J., Bowers, J.E.: Frequency comb generation in the green using silicon nitride microresonators. Laser Photonics Rev. 10, 631–638 (2016)CrossRefGoogle Scholar
  21. 21.
    Ciminelli, C., Campanella, C.M., Dell’Olio, F., Campanella, C.E., Armenise, M.N.: Label-free optical resonant sensors for biochemical applications. Progr. Quantum Electron. 37, 51–107 (2013)Google Scholar
  22. 22.
    Karunakaran, C., Bhargava, K., ‎Benjamin, R.: Biosensors and Bioelectronics. Elsevier (2015)Google Scholar
  23. 23.
    Ciminelli, C., Dell’Olio, F., Conteduca, D., Campanella, C.M., Armenise, M.N.: High performance SOI microring resonator for biochemical sensing. Opt. Laser Technol. 59, 60–67 (2014)Google Scholar
  24. 24.
    Dell’Olio, F., Conteduca, D., Ciminelli, C., Armenise, M.N.: New ultrasensitive resonant photonic platform for label-free biosensing, Opt. Express 23, 28593–28604 (2015)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • C. Ciminelli
    • 1
    Email author
  • G. Brunetti
    • 1
  • F. Dell’Olio
    • 1
  • F. Innone
    • 1
  • D. Conteduca
    • 1
  • M. N. Armenise
    • 1
  1. 1.Optoelectronics LaboratoryPolitecnico di BariBariItaly

Personalised recommendations