Modeling and Calibrating Triangulation Lidars for Indoor Applications

  • Anas AlhashimiEmail author
  • Giovanni Pierobon
  • Damiano Varagnolo
  • Thomas Gustafsson
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 430)


We present an improved statistical model of the measurement process of triangulation Light Detection and Rangings (Lidars) that takes into account bias and variance effects coming from two different sources of uncertainty: \((i) \) mechanical imperfections on the geometry and properties of their pinhole lens - CCD camera systems, and \((ii) \) inaccuracies in the measurement of the angular displacement of the sensor due to non ideal measurements from the internal encoder of the sensor. This model extends thus the one presented in [2] by adding this second source of errors. Besides proposing the statistical model, this chapter considers: \((i) \) specialized and dedicated model calibration algorithms that exploit Maximum Likelihood (ML)/Akaike Information Criterion (AIC) concepts and that use training datasets collected in a controlled setup, and \((ii) \) tailored statistical strategies that use the calibration results to statistically process the raw sensor measurements in non controlled but structured environments where there is a high chance for the sensor to be detecting objects with flat surfaces (e.g., walls). These newly proposed algorithms are thus specially designed and optimized for inferring precisely the angular orientation of the Lidar sensor with respect to the detected object, a feature that is beneficial especially for indoor navigation purposes.


Maximum likelihood Least squares Statistical inference Distance mapping sensors Lidar Nonlinear system AIC 


  1. 1.
    Alhashimi, A., Varagnolo, D., Gustafsson, T.: Joint temperature-lasing mode compensation for time-of-flight LiDAR sensors. Sensors 15(12), 31205–31223 (2015)CrossRefGoogle Scholar
  2. 2.
    Alhashimi, A., Varagnolo, D., Gustafsson, T.: Statistical modeling and calibration of triangulation Lidars. In: ICINCO (2016)Google Scholar
  3. 3.
    Anderson, D., Herman, H., Kelly, A.: Experimental characterization of commercial flash ladar devices. In: International Conference of Sensing and Technology, vol. 2 (2005)Google Scholar
  4. 4.
    Andreasson, H., Triebel, R., Burgard, W.: Improving plane extraction from 3D data by fusing laser data and vision. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2005), pp. 2656–2661. IEEE (2005)Google Scholar
  5. 5.
    Atanacio-Jiménez, G., González-Barbosa, J.J., Hurtado-Ramos, J.B., Ornelas-Rodríguez, F.J., Jiménez-Hernández, H., García-Ramirez, T., González-Barbosa, R.: Lidar velodyne HDL-64E calibration using pattern planes. Int. J. Adv. Robot. Syst. 8(5), 70–82 (2011)CrossRefGoogle Scholar
  6. 6.
    Blais, F.: Review of 20 years of range sensor development. J. Electron. Imaging 13(1) (2004)Google Scholar
  7. 7.
    Brown, D.C.: An advanced reduction and calibration for photogrammetric cameras. Technical report, DTIC Document (1964)Google Scholar
  8. 8.
    Campos, D., Santos, J., Gonçalves, J., Costa, P.: Modeling and simulation of a hacked neato xv-11 laser scanner. In: Robot 2015: Second Iberian Robotics Conference, pp. 425–436. Springer (2016)Google Scholar
  9. 9.
    Chen, C.Y., Chien, H.J.: On-site sensor recalibration of a spinning multi-beam lidar system using automatically-detected planar targets. Sensors 12(10), 13736–13752 (2012)CrossRefGoogle Scholar
  10. 10.
    Duane, C.B.: Close-range camera calibration. Photogramm. Eng. 37(8), 855–866 (1971)Google Scholar
  11. 11.
    Glennie, C.: Calibration and kinematic analysis of the velodyne HDL-64E S2 lidar sensor. Photogramm. Eng. Remote Sens. 78(4), 339–347 (2012)CrossRefGoogle Scholar
  12. 12.
    Glennie, C., Lichti, D.D.: Static calibration and analysis of the velodyne HDL-64E S2 for high accuracy mobile scanning. Remote Sens. 2(6), 1610–1624 (2010)CrossRefGoogle Scholar
  13. 13.
    Glennie, C., Lichti, D.D.: Temporal stability of the velodyne HDL-64E S2 scanner for high accuracy scanning applications. Remote Sens. 3(3), 539–553 (2011)CrossRefGoogle Scholar
  14. 14.
    Gong, X., Lin, Y., Liu, J.: 3D lidar-camera extrinsic calibration using an arbitrary trihedron. Sensors 13(2), 1902–1918 (2013)CrossRefGoogle Scholar
  15. 15.
    Gordon, M., Meidow, J.: Calibration of a multi-beam laser system by using a TLS-generated reference. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. II–5/W2, 85–90 (2013)CrossRefGoogle Scholar
  16. 16.
    Gustafsson, F.: Statistical sensor fusion. Studentlitteratur (2010)Google Scholar
  17. 17.
    Jokinen, O.: Self-calibration of a light striping system by matching multiple 3-D profile maps. In: Second International Conference on 3-D Digital Imaging and Modeling, 1999, Proceedings, pp. 180–190. IEEE (1999)Google Scholar
  18. 18.
    Kneip, L., Tâche, F., Caprari, G., Siegwart, R.: Characterization of the compact Hokuyo URG-04LX 2D laser range scanner. In: IEEE International Conference on Robotics and Automation, 2009, ICRA’09, pp. 1447–1454. IEEE (2009)Google Scholar
  19. 19.
    Konolige, K., Augenbraun, J., Donaldson, N., Fiebig, C., Shah, P.: A low-cost laser distance sensor. In: ICRA 2008, IEEE International Conference on Robotics and Automation, 2008, pp. 3002–3008. IEEE (2008)Google Scholar
  20. 20.
    Kümmerle, R., Grisetti, G., Burgard, W.: Simultaneous calibration, localization, and mapping. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3716–3721. IEEE (2011)Google Scholar
  21. 21.
    Lee, K.H., Ehsani, R.: Comparison of two 2D laser scanners for sensing object distances, shapes, and surface patterns. Comput. Electron. Agric. 60(2), 250–262 (2008)CrossRefGoogle Scholar
  22. 22.
    Lima, J., Gonçalves, J., Costa, P.J.: Modeling of a low cost laser scanner sensor. In: CONTROLO’2014–Proceedings of the 11th Portuguese Conference on Automatic Control, pp. 697–705. Springer (2015)Google Scholar
  23. 23.
    McIvor, A.M.: Calibration of a laser stripe profiler. In: Second International Conference on 3-D Digital Imaging and Modeling, 1999, Proceedings, pp. 92–98. IEEE (1999)Google Scholar
  24. 24.
    Mei, C., Rives, P.: Calibration between a central catadioptric camera and a laser range finder for robotic applications. In: Proceedings 2006 IEEE International Conference on Robotics and Automation, ICRA 2006, pp. 532–537. IEEE (2006)Google Scholar
  25. 25.
    Mirzaei, F.M., Kottas, D.G., Roumeliotis, S.I.: 3D lidar-camera intrinsic and extrinsic calibration: identifiability and analytical least-squares-based initialization. Int. J. Robot. Res. 31(4), 452–467 (2012)CrossRefGoogle Scholar
  26. 26.
    Muhammad, N., Lacroix, S.: Calibration of a rotating multi-beam lidar. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5648–5653. IEEE (2010)Google Scholar
  27. 27.
    Nguyen, V., Martinelli, A., Tomatis, N., Siegwart, R.: A comparison of line extraction algorithms using 2D laser rangefinder for indoor mobile robotics. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1929–1934. IEEE (2005)Google Scholar
  28. 28.
    Park, Y., Yun, S., Won, C.S., Cho, K., Um, K., Sim, S.: Calibration between color camera and 3D lidar instruments with a polygonal planar board. Sensors 14(3), 5333–5353 (2014)CrossRefGoogle Scholar
  29. 29.
    Reina, A., Gonzales, J.: Characterization of a radial laser scanner for mobile robot navigation. In: Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robots and Systems, 1997, IROS’97, vol. 2, pp. 579–585. IEEE (1997)Google Scholar
  30. 30.
    Sanz-Cortiella, R., Llorens-Calveras, J., Rosell-Polo, J.R., Gregorio-Lopez, E., Palacin-Roca, J.: Characterisation of the LMS200 laser beam under the influence of blockage surfaces influence on 3D scanning of tree orchards. Sensors 11(3), 2751–2772 (2011)CrossRefGoogle Scholar
  31. 31.
    Tang, P., Akinci, B., Huber, D.: Quantification of edge loss of laser scanned data at spatial discontinuities. Autom. Const. 18(8), 1070–1083 (2009)CrossRefGoogle Scholar
  32. 32.
    Teichman, A., Miller, S., Thrun, S.: Unsupervised intrinsic calibration of depth sensors via slam. In: Robotics: Science and Systems. Citeseer (2013)Google Scholar
  33. 33.
    Tiddeman, B., Duffy, N., Rabey, G., Lokier, J.: Laser-video scanner calibration without the use of a frame store. In: IEE Proceedings-Vision, Image and Signal Processing, vol. 145, pp. 244–248. IET (1998)Google Scholar
  34. 34.
    Tuley, J., Vandapel, N., Hebert, M.: Analysis and removal of artifacts in 3-D ladar data. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 2005, ICRA 2005, pp. 2203–2210. IEEE (2005)Google Scholar
  35. 35.
    Wei, G.Q., Hirzinger, G.: Active self-calibration of hand-mounted laser range finders. IEEE Trans. Robot. Autom. 14(3), 493–497 (1998)CrossRefGoogle Scholar
  36. 36.
    Weng, J., Cohen, P., Herniou, M.: Camera calibration with distortion models and accuracy evaluation. IEEE Trans. Pattern Anal. Mach. Intell. 14(10), 965–980 (1992)CrossRefGoogle Scholar
  37. 37.
    Ye, C., Borenstein, J.: Characterization of a 2-D laser scanner for mobile robot obstacle negotiation. In: ICRA, pp. 2512–2518 (2002)Google Scholar
  38. 38.
    Zhang, Q., Pless, R.: Constraints for heterogeneous sensor auto-calibration. In: CVPRW’04 Conference on Computer Vision and Pattern Recognition Workshop, p. 38. IEEE (2004)Google Scholar
  39. 39.
    Zhang, Q., Pless, R.: Extrinsic calibration of a camera and laser range finder (improves camera calibration). In: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2004 (IROS 2004), Proceedings, vol. 3, pp. 2301–2306. IEEE (2004)Google Scholar
  40. 40.
    Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Anas Alhashimi
    • 1
    • 2
    Email author
  • Giovanni Pierobon
    • 3
  • Damiano Varagnolo
    • 1
  • Thomas Gustafsson
    • 1
  1. 1.Control Engineering Group, Department of Computer Science, Electrical and Space EngineeringLuleå University of TechnologyLuleåSweden
  2. 2.Department of Computer EngineeringUniversity of BaghdadBaghdadIraq
  3. 3.Department of Information EngineeringUniversity of PadovaPadovaItaly

Personalised recommendations