Advertisement

Time-Optimal Paths for a Robotic Batting Task

  • Diana Serra
  • Fabio Ruggiero
  • Aykut C. Satici
  • Vincenzo Lippiello
  • Bruno Siciliano
Chapter
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 430)

Abstract

This paper presents a novel method to optimize the motion of a paddle within a nonprehensile batting task. The proposed approach shows that it is possible to online predict the impact time and the configuration of the paddle, in terms of its linear velocity and orientation, to re-direct a ball towards a desired location, imposing also a desired spin during the free flight. While exploiting the hybrid dynamics of the task during the minimization process, the obtained position and orientation paths are planned by minimizing the acceleration function of the paddle in SE(3). The batting paths are then tracked by a semi-humanoid robot through a closed-loop kinematic inversion. Numerical tests are implemented to compare different metrics to define the optimal impact time.

Keywords

Optimal trajectory planning Robotic batting task Dynamic nonprehensile manipulation 

Notes

Acknowledgements

The research leading to these results has been supported by the RoDyMan project, which has received funding from the European Research Council FP7 Ideas under Advanced Grant agreement number 320992.

References

  1. 1.
    Mason, M.T., Lynch, K.M.: Dynamic manipulation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 152–159. Tokyo, J (1993)Google Scholar
  2. 2.
    Lynch, K.M., Mason, M.T.: Dynamic nonprehensile manipulation: controllability, planning, and experiments. Int. J. Robot. Res. 18(64), 64–92 (1999)CrossRefGoogle Scholar
  3. 3.
    Serra, D.: Robot control for nonprehensile dynamic manipulation tasks. In: International Conference on Informatics in Control, Automation and Robotics, Doctoral Consortium, pp. 3–12. Lisbon, PT (2016)Google Scholar
  4. 4.
    Serra, D., Satici, A.C., Ruggiero, F., Lippiello, V., Siciliano, B.: An optimal trajectory planner for a robotic batting task: the table tennis example. In: International Conference on Informatics in Control, Automation and Robotics, pp. 90–101. Lisbon, P (2016)Google Scholar
  5. 5.
    Andersson, R.L.: A Robot Ping-Pong Player: Experiment in Real-Time Intelligent Control. MIT Press, Cambridge (1988)Google Scholar
  6. 6.
    Andersson, R.L.: Aggressive trajectory generator for a robot ping-pong player. IEEE Control Syst. Mag. 9(2), 15–21 (1989)CrossRefGoogle Scholar
  7. 7.
    Acosta, L., Rodrigo, J.J., Mendez, J., Marichal, G.N., Sigut, M.: Ping-pong player prototype. IEEE Robot. Autom. Mag. 10(4), 44–52 (2003)CrossRefGoogle Scholar
  8. 8.
    Senoo, T., Namiki, A., Ishikawa, M.: Ball control in high-speed batting motion using hybrid trajectory generator. In: IEEE International Conference on Robotics and Automation, pp. 1762–1767. Orlando, FL, USA (2006)Google Scholar
  9. 9.
    Sun, Y., Xiong, R., Zhu, Q., Wu, J., Chu, J.: Balance motion generation for a humanoid robot playing table tennis. In: IEEE-RAS International Conference on Humanoid Robots, pp. 19–25. Bled, SI (2011)Google Scholar
  10. 10.
    Liu, C., Hayakawa, Y., Nakashima, A.: Racket control and its experiments for robot playing table tennis. In: IEEE International Conference on Robotics and Biomimetics, pp. 241–246. Guangzhou, CN (2012)Google Scholar
  11. 11.
    Lai, C.H., Tsay, T.I.J.: Self-learning for a humanoid robotic ping-pong player. Adv. Robot. 25(9–10), 1183–1208 (2011)CrossRefGoogle Scholar
  12. 12.
    Zhang, Y., Xiong, R., Zhao, Y., Chu, J.: An adaptive trajectory prediction method for ping-pong robots. Intelligent Robotics and Applications, pp. 448–459. Springer, Berlin (2012)Google Scholar
  13. 13.
    Mülling, K., Kober, J., Kroemer, O., Peters, J.: Learning to select and generalize striking movements in robot table tennis. Int. J. Robot. Res. 32(3), 263–279 (2013)CrossRefGoogle Scholar
  14. 14.
    Huang, Y., Xu, D., Tan, M., Su, H.: Adding active learning to LWR for ping-pong playing robot. IEEE Trans. Control Syst. Technol. 21(4), 1489–1494 (2013)CrossRefGoogle Scholar
  15. 15.
    Yanlong, H., Bernhard, S., Jan, P.: Learning optimal striking points for a ping-pong playing robot. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4587–4592. Hamburg, D (2015)Google Scholar
  16. 16.
    Huang, Y., Büchler, D., Schölkopf, B., Peters, J.: Jointly learning trajectory generation and hitting point prediction in robot table tennis. In: IEEE-RAS International Conference on Humanoid Robots, pp. 650–655. Cancun, MX (2016)Google Scholar
  17. 17.
    +8 Gomez-Gonzalez, S., Neumann, G., Schölkopf, B., Peters, J.: Using probabilistic movement primitives for striking movements. In: IEEE-RAS International Conference on Humanoid Robots, pp. 502–508. Cancun, MX (2016)Google Scholar
  18. 18.
    Müller, M., Lupashin, S., D’Andrea, R.: Quadrocopter ball juggling. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5113–5120. San Francisco, CA, USA (2011)Google Scholar
  19. 19.
    Silva, R., Melo, F.S., Veloso, M.: Towards table tennis with a quadrotor autonomous learning robot and onboard vision. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 649–655. Hamburg, D (2015)Google Scholar
  20. 20.
    Wei, D., Guo-Ying, G., Ye, D., Xiangyang, Z., Han, D.: Ball juggling with an under-actuated flying robot. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 68–73. Hamburg, D (2015)Google Scholar
  21. 21.
    Nonomura, J., Nakashima, A., Hayakawa, Y.: Analysis of effects of rebounds and aerodynamics for trajectory of table tennis ball. In: IEEE Society of Instrument and Control Engineers Conference, pp. 1567–1572. Taipei, TW (2010)Google Scholar
  22. 22.
    Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G.: Robotics: Modelling, Planning and Control. Springer Science & Business Media, New York (2010)Google Scholar
  23. 23.
    Nakashima, A., Ito, D., Hayakawa, Y.: An online trajectory planning of struck ball with spin by table tennis robot. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 865–870. Besançon, F (2014)Google Scholar
  24. 24.
    do Carmo, M.P.: Riemannian Geometry. Mathematics. Birkhäuser, Boston (1992)CrossRefzbMATHGoogle Scholar
  25. 25.
    Zefran, M., Kumar, V., Croke, C.B.: On the generation of smooth three-dimensional rigid body motions. IEEE Trans. Robot. Autom. 14(4), 576–589 (1998)CrossRefGoogle Scholar
  26. 26.
    Lippiello, V., Ruggiero, F.: 3D monocular robotic ball catching with an iterative trajectory estimation refinement. In: IEEE International Conference on Robotics and Automation, pp. 3950–3955. Saint Paul, MN, USA (2012)Google Scholar
  27. 27.
    Cigliano, P., Lippiello, V., Ruggiero, F., Siciliano, B.: Robotic ball catching with an eye-in-hand single-camera system. IEEE Trans. Control Syst. Technol. 23(5), 1657–1671 (2015)CrossRefGoogle Scholar
  28. 28.
    Serra, D., Satici, A.C., Ruggiero, F., Lippiello, V., Siciliano, B.: An optimal trajectory planner for a robotic batting task: the table tennis example (2016). [web page] https://youtu.be/GXtBvbUHu5s
  29. 29.
    Nakashima, A., Ogawa, Y., Kobayashi, Y., Hayakawa, Y.: Modeling of rebound phenomenon of a rigid ball with friction and elastic effects. In: IEEE American Control Conference, pp. 1410–1415. Baltimore, MD, USA (2010)Google Scholar
  30. 30.
    Lourakis, M.I.A., levmar: Levenberg-Marquardt nonlinear least squares algorithms in C/C++ (2004). [web page] http://www.ics.forth.gr/~lourakis/levmar/. Accessed 31 Jan 2005
  31. 31.
    Serra, D., Ruggiero, F., Lippiello, V., Siciliano, B.: A Nonlinear least squares approach for nonprehensile dual-hand robotic ball juggling. World Congress of the International Federation of Automatic Control. Tolouse, FR (2017)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Diana Serra
    • 1
  • Fabio Ruggiero
    • 1
  • Aykut C. Satici
    • 2
  • Vincenzo Lippiello
    • 1
  • Bruno Siciliano
    • 1
  1. 1.Department of Electrical Engineering and Information TechnologyUniversity of Naples Federico IINaplesItaly
  2. 2.Electrical Engineering and Computer ScienceMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations