Advertisement

Passivity-Based Control Design and Experiments for a Rolling-Balancing System

  • Alejandro Donaire
  • Martin Crespo
  • Fabio Ruggiero
  • Vincenzo Lippiello
  • Bruno Siciliano
Chapter
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 430)

Abstract

In this chapter we present the design and implementation of a robust passivity-based controller for a rolling-balancing system known as the disk-on-disk. The control design aims to asymptotically stabilize the desired equilibrium of the disk-on-disk by shaping the energy function of the system and injecting damping. This first design is further augmented by the addition of a nonlinear PID controller to compensate for disturbances. We incorporate in the nonlinear PID the possibility of stabilizing either a set-point of angular positions of the disks or their angular velocities while keeping the balance of the system. Although the underactuation feature of the system and the disturbances hamper the control design, we show that the passivity-based framework offers the necessary tools to prove the desired stability properties of the close loop. Finally, we evaluate the practical applicability of the control design by implementing the controller on a real hardware for the disk-on-disk system and asses the performance of the control system.

Keywords

Rolling-balancing system Nonlinear control Passivity-based control Integral action 

Notes

Acknowledgements

This work was partially supported by the RoDyMan project, which has received funding from the European Research Council FP7 Ideas under Advanced Grant agreement number 320992. The authors are solely responsible for the content of this manuscript. The work of the second author at PRISMA Lab was support by the National University of Rosario, Argentina, under its internship program.

References

  1. 1.
    Crespo, M., Donaire, A., Ruggiero, F., Lippiello, V., Siciliano, B.: Design, implementation and experiments of a robust passivity-based controller for a rolling-balancing system. In: International Conference on Informatics in Control, Automation and Robotics, Lisbon, Portugal (2016)Google Scholar
  2. 2.
    Donaire, A., Junco, S.: On the addition of integral action to port-controlled Hamiltonian systems. Automatica 45, 1910–1916 (2009)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Donaire, A., Romero, J.G., Ortega, R., Siciliano, B., Crespo, M.: Robust IDA-PBC for underactuated mechanical systems subject to matched disturbances. Int. J. Robust Nonlinear Control (in press, 2016)Google Scholar
  4. 4.
    Donaire, A., Ruggiero, F., Buonocore, L.R., Lippiello, V., Siciliano, B.: Passivity-based control for a rolling-balancing system: the nonprehensile disk-on-disk. IEEE Trans. Control Syst. Technol. (accepted, 2016)Google Scholar
  5. 5.
    Haddad, W., Chellaboina, V.: Nonlinear Dynamical Systems and Control. A Lyapunov-Based Approach. Princeton University Press, New Jersey (2007)MATHGoogle Scholar
  6. 6.
    Khalil, H.K.: Nonlinear Systems. Prentice Hall (2002)Google Scholar
  7. 7.
    Lanczos, C.: The Variational Principles of Mechanics. University of Toronto Press (1960)Google Scholar
  8. 8.
    Lippiello, V., Ruggiero, F., Siciliano, B.: The effects of shapes in input-state linearization for stabilization of nonprehensile planar rolling dynamic manipulation. IEEE Robot. Autom. Lett. 1(1), 492–499 (2016)CrossRefGoogle Scholar
  9. 9.
    Merkin, D.: Introduction to the Theory of Stability. Springer, New York (1997)Google Scholar
  10. 10.
    Ortega, R., Romero, J.G.: Robust integral control of port-Hamiltonian systems: the case of non-passive outputs with unmatched disturbances. Syst. Control Lett. 61(1), 11–17 (2012)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Ortega, R., Loría, A., Nicklasson, P.J., Sira-Ramírez, H.: Passivity-Based Control of Euler-Lagrange Systems: Mechanical, Electrical, and Electromechanical Applications. Springer, London (1998)CrossRefGoogle Scholar
  12. 12.
    Ortega, R., Spong, M.W., Gomez-Estern, F., Blankenstein, G.: Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment. IEEE Trans. Autom. Control 47(8), 1218–1233 (2002)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Ortega, R., Donaire, A., Romero, J.G.: Passivity-Based Control of Mechanical Systems. Lecture Notes in Control and Information Sciences. Springer, Berlin (2016)MATHGoogle Scholar
  14. 14.
    Romero, J.G., Donaire, A., Ortega, R.: Robust energy shaping contorl of mechanical systems. Syst. Control Lett. 62(9), 770–780 (2013)CrossRefMATHGoogle Scholar
  15. 15.
    Romero, J.G., Ortega, R., Donaire, A.: Energy shaping of mechanical systems via PID control and extension to constant speed tracking. IEEE Trans. Autom. Control 61(11), 3551–3556 (2016)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Ryu, J.C., Ruggiero, F., Lynch, K.M.: Control of nonprehensile rolling manipulation: balancing a disk on a disk. IEEE Trans. Robot. 29(5), 1152–1161 (2013)CrossRefGoogle Scholar
  17. 17.
    Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G.: Robotics. Modelling, Planning and Control. Springer, London (2009)Google Scholar
  18. 18.
    Spong, M., Hutchinson, S., Vidyasagar, M.: Robot Modeling and Control. Wiley, USA (2006)Google Scholar
  19. 19.
    van der Schaft, A.J.: L2-Gain and Passivity Techniques in Nonlinear Control. Springer, Berlin (2000)CrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Alejandro Donaire
    • 1
  • Martin Crespo
    • 2
  • Fabio Ruggiero
    • 1
  • Vincenzo Lippiello
    • 1
  • Bruno Siciliano
    • 1
  1. 1.PRISMA Lab, Dipartimento di Ingegneria Elettrica e Tecnologie dell’InformazioneUniversità di Napoli Federico IINapoliItaly
  2. 2.Departamento de Control, FCEIAUniversidad Nacional de Rosario and CONICETRosarioArgentina

Personalised recommendations