Advertisement

Reducing Data Center Resource Over-Provisioning Through Dynamic Load Management for Virtualized Network Functions

  • Andreas Oeldemann
  • Thomas Wild
  • Andreas Herkersdorf
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10172)

Abstract

Network Function Virtualization aims at replacing specialized hardware network appliances by commodity servers. In this paper, we address sub-second variations in data center network workloads, which place highly volatile processing demands on the servers. This makes an efficient dimensioning of the hardware resources dedicated to network function execution challenging. Based on the observation that short-term peak workloads typically do not hit all machines at exactly the same time, we propose to enable the servers to reuse under-utilized resources of their peers by selectively redirecting packets when local resources are exhausted. To satisfy line rate performance demands, we present a hardware load management layer, which is located in the ingress path of each server. Our simulative evaluation shows that the load management layer can reduce the hardware resources required for network function execution by up to 24% while maintaining network throughput and latency performance. Especially in large data centers, these resource savings can significantly reduce network expenses.

Keywords

Network Node Network Function Processing Resource Software Define Networking Resource Saving 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Benson, T., Anand, A., Akella, A., Zhang, M.: Understanding data center traffic characteristics. ACM SIGCOMM Comput. Commun. Rev. 40(1), 92–99 (2010)CrossRefGoogle Scholar
  2. 2.
    Braun, L., Diekmann, C., Kammenhuber, N., Carle, G.: Adaptive load-aware sampling for network monitoring on multicore commodity hardware. In: 2013 IFIP Networking Conference, pp. 1–9. IEEE (2013)Google Scholar
  3. 3.
    Cao, L., Sharma, P., Fahmy, S., Saxena, V.: Nfv-vital: a framework for characterizing the performance of virtual network functions. In: 2015 IEEE Conference on Network Function Virtualization and Software Defined Network (NFV-SDN), pp. 93–99. IEEE (2015)Google Scholar
  4. 4.
    Eisenbud, D.E., Yi, C., Contavalli, C., Smith, C., Kononov, R., Mann-Hielscher, E., Cilingiroglu, A., Cheyney, B., Shang, W., Hosein, J.D.: Maglev: a fast and reliable software network load balancer. In: 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI 2016), pp. 523–535. USENIX Association (2016)Google Scholar
  5. 5.
    Forconesi, M., Sutter, G., López-Buedo, S., de Vergara, J.E.L., Aracil, J.: Bridging the gap between hardware and software open source network developments. IEEE Netw. 28(5), 13–19 (2014)CrossRefGoogle Scholar
  6. 6.
    Heller, B., Seetharaman, S., Mahadevan, P., Yiakoumis, Y., Sharma, P., Banerjee, S., McKeown, N.: Elastictree: saving energy in data center networks. In: 7th USENIX Symposium on Networked Systems Design and Implementation (NSDI 2010), pp. 249–264. USENIX Association (2010)Google Scholar
  7. 7.
    Jackson, E.J., Walls, M., Panda, A., Pettit, J., Pfaff, B., Rajahalme, J., Koponen, T., Shenker, S.: Softflow: a middlebox architecture for open vswitch. In: 2016 USENIX Annual Technical Conference (USENIX ATC 2016), pp. 15–28. USENIX Association (2016)Google Scholar
  8. 8.
    Kandula, S., Katabi, D., Davie, B., Charny, A.: Walking the tightrope: responsive yet stable traffic engineering. ACM SIGCOMM Comput. Commun. Rev. 35(4), 253–264 (2005)CrossRefGoogle Scholar
  9. 9.
    Kandula, S., Katabi, D., Sinha, S., Berger, A.: Dynamic load balancing without packet reordering. ACM SIGCOMM Comput. Commun. Rev. 37(2), 51–62 (2007)CrossRefGoogle Scholar
  10. 10.
    McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J., Shenker, S., Turner, J.: Openflow: enabling innovation in campus networks. ACM SIGCOMM Comput. Commun. Rev. 38(2), 69–74 (2008)CrossRefGoogle Scholar
  11. 11.
    Mijumbi, R., Serrat, J., Gorricho, J.L., Bouten, N., De Turck, F., Boutaba, R.: Network function virtualization: state-of-the-art and research challenges. IEEE Commun. Surv. Tutorials 18(1), 236–262 (2015)CrossRefGoogle Scholar
  12. 12.
    Patel, P., Bansal, D., Yuan, L., Murthy, A., Greenberg, A., Maltz, D.A., Kern, R., Kumar, H., Zikos, M., Wu, H., Kim, C., Naveen, K.: Ananta: cloud scale load balancing. ACM SIGCOMM Comput. Commun. Rev. 43(4), 207–218 (2013)CrossRefGoogle Scholar
  13. 13.
    Ramaswamy, R., Weng, N., Wolf, T.: Analysis of network processing workloads. J. Syst. Architect. 55(10), 421–433 (2009)CrossRefGoogle Scholar
  14. 14.
    Center for Applied Internet Data Analysis: The CAIDA UCSD Anonymized Internet Traces 2015–15/02/19, 15/05/21, 15/09/17, 15/12/17. http://www.caida.org/data/passive/passive_2015_dataset.xml
  15. 15.
    ETSI Industry Specification Group: ETSI GS NFV-REL 001 V1.1.1, Network Functions Virtualisation (NFV) Resiliency Requirements, January 2015Google Scholar
  16. 16.
    Varga, A.: The omnet++ discrete event simulation system. In: Proceedings of the 15th European simulation multiconference (ESM 2001), vol. 9, p. 65 (2001)Google Scholar
  17. 17.
    Wang, H., Xie, H., Qiu, L., Yang, Y.R., Zhang, Y., Greenberg, A.: Cope: traffic engineering in dynamic networks. ACM SIGCOMM Comput. Commun. Rev. 36(4), 99–110 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Andreas Oeldemann
    • 1
  • Thomas Wild
    • 1
  • Andreas Herkersdorf
    • 1
  1. 1.Chair for Integrated SystemsTechnical University of MunichMunichGermany

Personalised recommendations