Rough Search of Vague Knowledge

  • Edward BryniarskiEmail author
  • Anna Bryniarska
Part of the Studies in Computational Intelligence book series (SCI, volume 708)


This chapter presents the theoretical basis of the vague knowledge search algorithmization of a rough method. It introduces some data granulation method which aggregates this data as rough sets of data or ways to search this data in the semantic networks. As a result of this method is the possibility of the rough sets description, analogically to sets in the classical theory of sets. We try to answer the question how the agent searching some knowledge can conceive the search of vague knowledge in the semantic networks: (1) if it can, accordingly to the semantic and the conceiving rules, describe the relationships between nodes in this semantic network which are identified as ways of searching knowledge, (2) if it can approximate sets of this ways by using ways described by some concepts and roles.


  1. 1.
    Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The Description Logic. Handbook Theory, Implementation and Application. Cambridge University Press, Cambridge (2003)Google Scholar
  2. 2.
    Bobillo, F., Straccia, U.: fuzzyDL: An expressive fuzzy description logic reasoner. In: Proceedings of IEEE International Conference on Fuzzy Systems FUZZ-IEEE 2008 (IEEEWorld Congress on Computational Intelligence), pp. 923–930 (2008)Google Scholar
  3. 3.
    Bonikowski, Z., Bryniarski, E., Wybraniec-Skardowska, U.: Rough pragmatic description logic. In: Skowron, A., Suraj, Z. (eds.) Rough Sets and intelligent Systems—Professor Zdzisław Pawlak in Memoriam, vol. 2, pp. 157–184. Springer, Berlin, Heidelberg, New York (2013). ISBN: 978-3-642-30340-1Google Scholar
  4. 4.
    Bonikowski, Z., Wybraniec-Skardowska, U.: Vagueness and Roughness. In: Peters, J.F., Skowron, A., Rybi´nski, H. (eds.) Transactions on Rough Sets IX. LNCS, vol. 5390, pp. 1–13. Springer, Heidelberg (2008)Google Scholar
  5. 5.
    Bonikowski, Z., Bryniarski, E., Wybraniec-Skardowska, U.: Extensions and intensions in the rough set theory. J. Inform. Sci. 107, 149–167 (1998)CrossRefzbMATHGoogle Scholar
  6. 6.
    Bryniarska, A.: The paradox of the fuzzy disambiguation in the information retrieval. Int. J. Adv. Res. Artif. Intell. (IJARAI) 2(9), 55–58 (2013)Google Scholar
  7. 7.
    Bryniarska, A.: The model of possible web data retrieval. In: Proceedings of 2nd IEEE International Conference on Cybernetics CYBCONF 2015, Gdynia, pp. 348–353 (2015). ISBN 978-1-4799-8320-9Google Scholar
  8. 8.
    Bryniarski, E.: A calculus of rough sets of the first order. Bull. Pol. Acad. Math. 37, 109–136 (1989)Google Scholar
  9. 9.
    Bryniarski, E.: Formal conception of rough sets. Fund. Inf. 27(2–3), 103–108 (1996)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Bryniarski, E.: The logic of conceiving of the sentential schemes. In: XIX Conference “Applications of Logic in Philosophy and the Foundations of Mathematics” Szklarska Poręba, Poland 5–9 May 2014/Abstract, University of Wrocław, 4–6 2014Google Scholar
  11. 11.
    Fanizzi, N., d’Amato, C., Esposito, F., Lukasiewicz, T.: Representing uncertain concepts in rough description logics via contextual indiscernibility relations. In: Bobillo, F., da Costa, P.C.G., d’Amato, C., et al. (eds.) Proceedings of 4th International Workshop on Uncertainty Reasoning for the Semantic Web (URSW 2008). CEUR-WS, vol. 423. (2008). Accessed 13 May 2011
  12. 12.
    Pawlak, Z.: Information systems—theoretical foundations. Inf. Syst. 6, 205–218 (1981)CrossRefzbMATHGoogle Scholar
  13. 13.
    Pawlak, Z.: Rough sets. Int. J. Comput. Inf. Sci. 11, 341–356 (1982)CrossRefzbMATHGoogle Scholar
  14. 14.
    Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning About Data. Kluwer Academic Publishers, Dordrecht (1991)CrossRefzbMATHGoogle Scholar
  15. 15.
    Pawlak, Z.: Rough set elements. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery 1. Methodology and Applications, pp. 10–30. Springer, Heidelberg (1998)Google Scholar
  16. 16.
    Pedrycz, W., Skowron, A., Kreinovich, V.: Handbook of Granular Computing. Wiley, New York (2008)CrossRefGoogle Scholar
  17. 17.
    Pedrycz, W.: Allocation of information granularity in optimization and decision-making models: towards building the foundations of granular computing. Eur. J. Oper. Res. 232(1), 137–145 (2014). doi: 10.1016/j.ejor.2012.03.038 CrossRefGoogle Scholar
  18. 18.
    Pedrycz, W., Bargiela, A.: An optimization of allocation of information granularity in the interpretation of data structures: toward granular fuzzy clustering. IEEE Trans. Syst. Man Cybern. Part B Cybern. 42(3), 582–590 (2012). doi: 10.1109/TSMCB.2011.2170067 CrossRefGoogle Scholar
  19. 19.
    Pedrycz, W.: Granular Computing: Analysis and Design of Intelligent Systems. Taylor & Francis Group, Abingdon (2013)CrossRefGoogle Scholar
  20. 20.
    Polkowski, L.: Reasoning by Parts. An Outline of Rough Mereology, Warszawa (2011)Google Scholar
  21. 21.
    Skowron, A., Polkowski, L.: Rough mereology and analytical morphology. In: Orłowska, E. (ed.) Incomplete Information: Rough Set Analysis, pp. 399–437. Springer, Heidelberg (1996)Google Scholar
  22. 22.
    Skowron, A., Wasilewski, P.: An introduction to perception based computing. In: Kim, T.-h., Lee, Y.-h., Kang, B.-H., Ślęzak, D. (eds.) FGIT 2010. LNCS, vol. 6485, pp. 12–25. Springer, Heidelberg (2010)Google Scholar
  23. 23.
    Simou, N., Stoilos, G., Tzouvaras, V., Stamou, G., Kollias, S.: Storing and querying fuzzy knowledge in the semantic web. In: Bobillo, F., da Costa, P.C.G., d’Amato, C., et al. (eds.) Proceedngs 4th International Workshop on Uncertainty Reasoning for the Semantic Web URSW 2008, May 13. CEUR-WS, vol. 423, (2008). Accessed 13 May 2011
  24. 24.
    Simou, N., Mailis, T., Stoilos, G., Stamou, S.: Optimization techniques for fuzzy description logics. In: Description Logics. Proceedings 23rd International Workshop on Description Logics (DL 2010). CEUR-WS, vol. 573, (2010). Accessed 13 May 2011
  25. 25.
    Waldmajer, J.: A representation of relational systems. In: Kłopotek, M.A., Wierzchoń, S.T., Trojanowski, K. (eds.) Inteligent Information Processing and Web Mining, June 2–5, Zakopane 2003, Proccedings of the International IIS: IIPWM’03 Conference, pp. 569–573. Springer, BerlinGoogle Scholar
  26. 26.
    Waldmajer, J.: Boolean algebra of multistructures, abstracts. In: Logic Colloqium’03, August 14–20, 2003, p. 151. University of Helsinki, Helsinki (2003)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute of Mathematics and Informatics, Opole UniversityOpolePoland
  2. 2.Institute of Control and Computer Engineering, Opole University of TechnologyOpolePoland

Personalised recommendations