Advertisement

The Use of nrTMS Data for Tractography of Language Networks

  • Gord von CampeEmail author
  • Margit Jehna
Chapter

Abstract

The prevention of permanent neurological deficits is of prime importance in the surgical treatment of lesions arising in or near eloquent brain regions. In an attempt to minimize the risks, fMRI and diffusion tensor imaging fiber tracking (DTI FT) are routinely used in preoperative assessment. These techniques however rely heavily on mathematical algorithms to interpret and model underlying magnetic resonance datasets, resulting only in an indirect representation of neural activity and interconnections. Transcranial magnetic stimulation (TMS) on the other hand can be used to assess cortical function directly. Navigated repetitive TMS (nrTMS) has already shown promising results in the cortical mapping of language functions. The use of truly functional nrTMS that generated language-specific stimulation points as seed points in DTI FT of language networks, instead of calculated fMRI activation clusters, enhances the spatial resolution of the resulting tractography, providing new insights in the already complex organization of the language system. This information in turn can be integrated into the preoperative workup.

Notes

Acknowledgments

Our gratitude goes to our patients and volunteers, and we thank Sascha Freigang and Dr. Shane Matsune Fresnoza for performing the nrTMS language mappings and Mag. Karla Zaar for the language evaluations. All examinations were performed according to good clinical practice (GCP) guidelines, following protocol approval by the local ethics committee (reference # 28-144 ex 15/16).

References

  1. Basser PJ, Mattiello J, LeBihan D. Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B. 1994;103:247–54.CrossRefPubMedGoogle Scholar
  2. Broca M. Sur le siège de la faculté du langage. Bull Soc Anthropol Paris. 1861;2:235–8.Google Scholar
  3. Brodmann K. Vergleichende Lokalisationslehre der Großhirnrinde, in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Leipzig: Verlag von Johann Ambrosius Barth; 1909.Google Scholar
  4. Catani M. From hodology to function. Brain. 2007;130:602–5.CrossRefPubMedGoogle Scholar
  5. Catani M, Jones DK, Ffytche DH. Perisylvian language networks of the human brain. Ann Neurol. 2005;57:8–16.CrossRefPubMedGoogle Scholar
  6. De Benedictis A, Duffau H. Brain hodotopy: from esoteric concept to practical surgical applications. Neurosurgery. 2011;68:1709–23.CrossRefPubMedGoogle Scholar
  7. De Witt Hamer PC, Robles SG, Zwinderman AH, Duffau H, Berger MS. Impact of intraoperative stimulation brain mapping on glioma surgery outcome: a meta-analysis. J Clin Oncol. 2012;30:2559–65.CrossRefPubMedGoogle Scholar
  8. Duffau H. The anatomo-functional connectivity of language revisited. New insights provided by electrostimulation and tractography. Neuropsychologia. 2008;46:927–34.CrossRefPubMedGoogle Scholar
  9. Duffau H. Introduction. Surgery of gliomas in eloquent areas: from brain hodotopy and plasticity to functional neurooncology. Neurosurg Focus. 2010;28:Intro.CrossRefPubMedGoogle Scholar
  10. Espadaler JM, Conesa G. Navigated repetitive Transcranial Magnetic Stimulation (TMS) for language mapping: a new tool for surgical planning. In: Duffau H, editor. Brain mapping—from neural basis of cognition to surgical applications. Vienna: Springer-Verlag; 2011. p. 253–61.Google Scholar
  11. Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW. Smith SM. FSL Neuroimage. 2012;62:782–90.CrossRefPubMedGoogle Scholar
  12. Kilbride RD. Intraoperative functional cortical mapping of language. J Clin Neurophysiol. 2013;30:591–6.CrossRefPubMedGoogle Scholar
  13. Krieg SM, Sollmann N, Hauck T, Ille S, Meyer B, Ringel F. Repeated mapping of cortical language sites by preoperative navigated transcranial magnetic stimulation compared to repeated intraoperative DCS mapping in awake craniotomy. BMC Neurosci. 2014;15:20.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Kwong KK, Belliveau JW, Chesler DA, et al. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci U S A. 1992;89:5675–9.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Mori S, Wakana S, van Zijl PMC, Nagae-Poetscher LM. MRI atlas of human white matter. Amsterdam: Elsevier; 2005.Google Scholar
  16. Moseley ME, Cohen Y, Kucharczyk J, et al. Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system. Radiology. 1990;176:439–45.CrossRefPubMedGoogle Scholar
  17. Negwer C, Sollmann N, Ille S, et al. Language pathway tracking: comparing nTMS-based DTI fiber tracking with a cubic ROIs-based protocol. J Neurosurg. 2016a;126(3):1006–14.CrossRefPubMedGoogle Scholar
  18. Negwer C, Ille S, Hauck T, Sollmann N, Maurer S, Kirschke JS, Ringel F, Meyer B, Krieg SM. Visualization of subcortical language pathways by diffusion tensor imaging fiber tracking based on rTMS language mapping. Brain Imaging Behav. 2016b Jun 20 [Epub ahead of print].Google Scholar
  19. Ogawa S, Lee TM, Nayak AS, Glynn P. Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med. 1990;14:68–78.CrossRefPubMedGoogle Scholar
  20. Pauling L, Coryell CD. The magnetic properties and structure of hemoglobin, oxyhemoglobin and carbonmonoxyhemoglobin. Proc Natl Acad Sci U S A. 1936;22:210–6.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Penfield W, Jasper H. Epilepsy and the functional anatomy of the human brain. 2nd ed. Boston: Little, Brown and Company; 1954.Google Scholar
  22. Picht T, Krieg SM, Sollmann N, et al. A comparison of language mapping by preoperative navigated transcranial magnetic stimulation and direct cortical stimulation during awake surgery. Neurosurgery. 2013;72:808–19.CrossRefPubMedGoogle Scholar
  23. Raffa G, Bährend I, Schneider H, Faust K, Germanò A, Vajkoczy P, Picht T. A novel technique for region and linguistic specific nTMS-based DTI fiber tracking of language pathways in brain tumor patients. Front Neurosci. 2016;10:552.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Soares JM, Marques P, Alves V, Sousa N. A hitchhiker’s guide to diffusion tensor imaging. Front Neurosci. 2013;7:31.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Sollmann N, Giglhuber K, Tussis L, Meyer B, Ringel F, Krieg SM. nTMS-based DTI fiber tracking for language pathways correlates with language function and aphasia—a case report. Clin Neurol Neurosurg. 2015;136:25–8.CrossRefPubMedGoogle Scholar
  26. Sollmann N, Negwer C, Ille S, Maurer S, Hauck T, Kirschke JS, Ringel F, Meyer B, Krieg SM. Feasibility of nTMS-based DTI fiber tracking of language pathways in neurosurgical patients using a fractional anisotropy threshold. J Neurosci Methods. 2016;267:45–54.CrossRefPubMedGoogle Scholar
  27. Stieglitz LH, Seidel K, Wiest R, Beck J, Raabe A. Localization of primary language areas by arcuate fascicle fiber tracking. Neurosurgery. 2012;70:56–65.CrossRefGoogle Scholar
  28. Tarapore PE, Findlay AM, Honma SM, et al. Language mapping with navigated repetitive TMS: proof of technique and validation. Neuroimage. 2013;82:260–72.CrossRefPubMedGoogle Scholar
  29. Weiss Lucas C, Tursunova I, Neuschmelting V, et al. Functional MRI vs. navigated TMS to optimize M1 seed volume delineation for DTI tractography. A prospective study in patients with brain tumours adjacent to the corticospinal tract. Neuroimage Clin. 2017;13:297–309.CrossRefPubMedGoogle Scholar
  30. Wernicke C. Der Aphasische Symptomencomplex—Eine Psychologische Studie auf Anatomischer Basis. Breslau: Max Cohn & Weigert; 1874.Google Scholar
  31. Yeh FC, Verstynen TD, Wang Y, Fernández-Miranda JC, Tseng WY. Deterministic diffusion fiber tracking improved by quantitative anisotropy. PLoS One. 2013;8:e80713.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of NeurosurgeryMedical University of GrazGrazAustria
  2. 2.LKH-Univ. Klinikum GrazUniversitätsklinik für NeurochirurgieGrazAustria
  3. 3.Department of Radiology, Division of NeuroradiologyMedical University of GrazGrazAustria
  4. 4.LKH-Univ. Klinikum Graz, Universitätsklinik für Radiologie, Klinische Abteilung für NeuroradiologieGrazAustria

Personalised recommendations