Skip to main content

Modeling and Measurement of a Pedestrian’s Center-of-Mass Trajectory

  • Conference paper
  • First Online:
Dynamics of Civil Structures, Volume 2

Abstract

This paper presents the measurement and model updating of a pedestrian’s center of mass trajectory. A mathematical model proposed by the authors is updated using the actual trajectory of a pedestrian. The mathematical model is based on the principle that a human’s control capability tries to maintain balance with respect to the pedestrian’s center of mass (CoM), independently of the surface type. In this research, the human is considered as a mass point concentrated at CoM. The parameters of the models are updated using experimental identification of the human walking trajectory on a rigid surface. The proposed measurement technique uses a depth sensor, which enable skeletal tracking of the pedestrian walking on rigid or flexible structures. Experiments were performed using a mobile platform with the time-of-flight commercial camera Microsoft Kinect for Windows 2.0. The velocity of the mobile platform is set to maintain a 1 m separation from the pedestrian in order to provide high resolution. The results of the measurement technique allowed the identification of the human’s CoM trajectory. The results of the model updating process present the probability density function of the parameters which could be used for modeling the CoM’s trajectory of the pedestrian.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yang, Q., Qin, J., Law, S.: A three-dimensional human walking model. J. Sound Vib. 357, 437–456 (2015)

    Article  Google Scholar 

  2. Sánchez, J., Gómez, D., Thomson, P.: Análisis de la interacción humano-estructura en puentes peatonales de santiago de cali. Dyna 80 (177), 86–94 (2013)

    Google Scholar 

  3. Blachowski, B., Holobut, P., Ortiz, A., Caicedo, J.: Simple human-structure interaction model of walking on a flexible surface. In: ISMA2016 International Conference on Noise and Vibration Engineering, USD2016 International Conference on Uncertainty in Structural Dynamics, pp. 559–570, Leuven, Belgium (2016)

    Google Scholar 

  4. Braune, W., Fischer, O.: The Human Gait. Springer, Berlin (1987)

    Book  Google Scholar 

  5. Whittle, M.W.: Three-dimensional motion of the center of gravity of the body during walking. Hum. Mov. Sci. 16 (2), 347–355 (1997)

    Article  Google Scholar 

  6. Dang, H.V., Živanović, S.: Experimental characterisation of walking locomotion on rigid level surfaces using motion capture system. Eng. Struct. 91, 141–154 (2015)

    Article  Google Scholar 

  7. Van Nimmen, K., Lombaert, G., Jonkers, I., De Roeck, G., Van den Broeck, P.: Characterisation of walking loads by 3d inertial motion tracking. J. Sound Vib. 333 (20), 5212–5226 (2014)

    Article  Google Scholar 

  8. Winter, D.A.: Biomechanics and Motor Control of Human Movement. Wiley, New York (2009)

    Book  Google Scholar 

  9. Maus, H.-M., Seyfarth, A., Grimmer, S.: Combining forces and kinematics for calculating consistent centre of mass trajectories. J. Exp. Biol. 214 (21), 3511–3517 (2011)

    Article  Google Scholar 

  10. Carpentier, J., Benallegue, M., Mansard, N., Laumond, J.-P.: A kinematics-dynamics based estimator of the center of mass position for anthropomorphic system – a complementary filtering approach. In: 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), pp. 1121–1126. IEEE, New York (2015)

    Google Scholar 

  11. Jun, S.-K., Zhou, X., Ramsey, D.K., Krovi, V.N.: A comparative study of human motion capture and computational analysis tools. In: The 2nd International Digital Human Modeling Symposium, Citeseer (2003)

    Google Scholar 

  12. Galna, B., Barry, G., Jackson, D., Mhiripiri, D., Olivier, P., Rochester, L.: Accuracy of the microsoft Kinect sensor for measuring movement in people with Parkinson’s disease. Gait Posture 39 (4), 1062–1068 (2014)

    Article  Google Scholar 

  13. Seer, S., Brändle, N., Ratti, C.: Kinects and human kinetics: a new approach for studying pedestrian behavior. Transp. Res. C 48, 212–228 (2014)

    Article  Google Scholar 

  14. Zerpa, C., Lees, C., Patel, P., Pryzsucha, E., Patel, P.: The use of microsoft Kinect for human movement analysis. Int. J. Sports Sci. 5 (4), 120–127 (2015)

    Google Scholar 

  15. Chen, X., Henrickson, K., Wang, Y.: Kinect-based pedestrian detection for crowded scenes. Comput. Aided Civ. Inf. Eng. 31 (3), 229–240 (2016)

    Article  Google Scholar 

  16. Beck, J., Katafygiotis, L.S.: Updating models and their uncertainties i: Bayesian statistical framework. J. Eng. Mech. 124, 455–461 (2009)

    Article  Google Scholar 

  17. Cheung, S.H., Beck, J.: Bayesian model updating using hybrid Monte Carlo simulation with application to structural dynamic models with uncertain parameters. J. Eng. Mech. 135, 243–225 (2009)

    Article  Google Scholar 

  18. Robert, C., Casella, G.: Monte Carlo Statistical Methods. Springer, New York (2013)

    MATH  Google Scholar 

  19. Hastings, W.K.: Monte carlo sampling methods using Markov chains and their applications. Biometrika 57 (1), 97–109 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  20. Metropolis, N., Ulam, S.: The Monte Carlo method. J. Am. Stat. Assoc. 44 (247), 335–341 (1949)

    Article  MATH  Google Scholar 

  21. Ortiz, A.R.: Modeling human-structure interaction using a controller system. Ph.D. Thesis, University of South Carolina (2016)

    Google Scholar 

  22. MATLAB: version 7.10.0 (R2010a). The MathWorks Inc., Natick (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert R. Ortiz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Ortiz, A.R., Blachowski, B., Holobut, P., Franco, J.M., Marulanda, J., Thomson, P. (2017). Modeling and Measurement of a Pedestrian’s Center-of-Mass Trajectory. In: Caicedo, J., Pakzad, S. (eds) Dynamics of Civil Structures, Volume 2 . Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-54777-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54777-0_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54776-3

  • Online ISBN: 978-3-319-54777-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics