Advertisement

Modeling and Measurement of a Pedestrian’s Center-of-Mass Trajectory

  • Albert R. OrtizEmail author
  • Bartlomiej Blachowski
  • Pawel Holobut
  • Jean M. Franco
  • Johannio Marulanda
  • Peter Thomson
Conference paper
Part of the Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS)

Abstract

This paper presents the measurement and model updating of a pedestrian’s center of mass trajectory. A mathematical model proposed by the authors is updated using the actual trajectory of a pedestrian. The mathematical model is based on the principle that a human’s control capability tries to maintain balance with respect to the pedestrian’s center of mass (CoM), independently of the surface type. In this research, the human is considered as a mass point concentrated at CoM. The parameters of the models are updated using experimental identification of the human walking trajectory on a rigid surface. The proposed measurement technique uses a depth sensor, which enable skeletal tracking of the pedestrian walking on rigid or flexible structures. Experiments were performed using a mobile platform with the time-of-flight commercial camera Microsoft Kinect for Windows 2.0. The velocity of the mobile platform is set to maintain a 1 m separation from the pedestrian in order to provide high resolution. The results of the measurement technique allowed the identification of the human’s CoM trajectory. The results of the model updating process present the probability density function of the parameters which could be used for modeling the CoM’s trajectory of the pedestrian.

Keywords

Human-structure interaction Pedestrian’s trajectory Human-induced vibrations MS kinect sensor 

References

  1. 1.
    Yang, Q., Qin, J., Law, S.: A three-dimensional human walking model. J. Sound Vib. 357, 437–456 (2015)CrossRefGoogle Scholar
  2. 2.
    Sánchez, J., Gómez, D., Thomson, P.: Análisis de la interacción humano-estructura en puentes peatonales de santiago de cali. Dyna 80 (177), 86–94 (2013)Google Scholar
  3. 3.
    Blachowski, B., Holobut, P., Ortiz, A., Caicedo, J.: Simple human-structure interaction model of walking on a flexible surface. In: ISMA2016 International Conference on Noise and Vibration Engineering, USD2016 International Conference on Uncertainty in Structural Dynamics, pp. 559–570, Leuven, Belgium (2016)Google Scholar
  4. 4.
    Braune, W., Fischer, O.: The Human Gait. Springer, Berlin (1987)CrossRefGoogle Scholar
  5. 5.
    Whittle, M.W.: Three-dimensional motion of the center of gravity of the body during walking. Hum. Mov. Sci. 16 (2), 347–355 (1997)CrossRefGoogle Scholar
  6. 6.
    Dang, H.V., Živanović, S.: Experimental characterisation of walking locomotion on rigid level surfaces using motion capture system. Eng. Struct. 91, 141–154 (2015)CrossRefGoogle Scholar
  7. 7.
    Van Nimmen, K., Lombaert, G., Jonkers, I., De Roeck, G., Van den Broeck, P.: Characterisation of walking loads by 3d inertial motion tracking. J. Sound Vib. 333 (20), 5212–5226 (2014)CrossRefGoogle Scholar
  8. 8.
    Winter, D.A.: Biomechanics and Motor Control of Human Movement. Wiley, New York (2009)CrossRefGoogle Scholar
  9. 9.
    Maus, H.-M., Seyfarth, A., Grimmer, S.: Combining forces and kinematics for calculating consistent centre of mass trajectories. J. Exp. Biol. 214 (21), 3511–3517 (2011)CrossRefGoogle Scholar
  10. 10.
    Carpentier, J., Benallegue, M., Mansard, N., Laumond, J.-P.: A kinematics-dynamics based estimator of the center of mass position for anthropomorphic system – a complementary filtering approach. In: 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), pp. 1121–1126. IEEE, New York (2015)Google Scholar
  11. 11.
    Jun, S.-K., Zhou, X., Ramsey, D.K., Krovi, V.N.: A comparative study of human motion capture and computational analysis tools. In: The 2nd International Digital Human Modeling Symposium, Citeseer (2003)Google Scholar
  12. 12.
    Galna, B., Barry, G., Jackson, D., Mhiripiri, D., Olivier, P., Rochester, L.: Accuracy of the microsoft Kinect sensor for measuring movement in people with Parkinson’s disease. Gait Posture 39 (4), 1062–1068 (2014)CrossRefGoogle Scholar
  13. 13.
    Seer, S., Brändle, N., Ratti, C.: Kinects and human kinetics: a new approach for studying pedestrian behavior. Transp. Res. C 48, 212–228 (2014)CrossRefGoogle Scholar
  14. 14.
    Zerpa, C., Lees, C., Patel, P., Pryzsucha, E., Patel, P.: The use of microsoft Kinect for human movement analysis. Int. J. Sports Sci. 5 (4), 120–127 (2015)Google Scholar
  15. 15.
    Chen, X., Henrickson, K., Wang, Y.: Kinect-based pedestrian detection for crowded scenes. Comput. Aided Civ. Inf. Eng. 31 (3), 229–240 (2016)CrossRefGoogle Scholar
  16. 16.
    Beck, J., Katafygiotis, L.S.: Updating models and their uncertainties i: Bayesian statistical framework. J. Eng. Mech. 124, 455–461 (2009)CrossRefGoogle Scholar
  17. 17.
    Cheung, S.H., Beck, J.: Bayesian model updating using hybrid Monte Carlo simulation with application to structural dynamic models with uncertain parameters. J. Eng. Mech. 135, 243–225 (2009)CrossRefGoogle Scholar
  18. 18.
    Robert, C., Casella, G.: Monte Carlo Statistical Methods. Springer, New York (2013)zbMATHGoogle Scholar
  19. 19.
    Hastings, W.K.: Monte carlo sampling methods using Markov chains and their applications. Biometrika 57 (1), 97–109 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Metropolis, N., Ulam, S.: The Monte Carlo method. J. Am. Stat. Assoc. 44 (247), 335–341 (1949)CrossRefzbMATHGoogle Scholar
  21. 21.
    Ortiz, A.R.: Modeling human-structure interaction using a controller system. Ph.D. Thesis, University of South Carolina (2016)Google Scholar
  22. 22.
    MATLAB: version 7.10.0 (R2010a). The MathWorks Inc., Natick (2010)Google Scholar

Copyright information

© The Society for Experimental Mechanics, Inc. 2017

Authors and Affiliations

  • Albert R. Ortiz
    • 1
    Email author
  • Bartlomiej Blachowski
    • 2
  • Pawel Holobut
    • 2
  • Jean M. Franco
    • 3
  • Johannio Marulanda
    • 3
  • Peter Thomson
    • 3
  1. 1.Department of Civil and Environmental EngineeringUniversidad del NorteBarranquillaColombia
  2. 2.Institute of Fundamental Technological ResearchPolish Academy of SciencesWarsawPoland
  3. 3.School of Civil Engineering and GeomaticsUniversidad del ValleCaliColombia

Personalised recommendations