Temperature Effects on the Modal Properties of a Suspension Bridge

  • Etienne CheynetEmail author
  • Jonas Snæbjörnsson
  • Jasna Bogunović Jakobsen
Conference paper
Part of the Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS)


The paper studies temperature effects on the modal parameters of a suspension bridge across a Norwegian fjord. The approach used is a full-scale ambient vibration testing, where an automated Covariance-Driven Stochastic Subspace Identification (SSI-COV) method is used to identify the modal parameters. The bridge site, the bridge structure and the monitoring system are presented, followed by a summary of the data analysis procedure and the parameters used for the automated SSI-COV method applied. The operational modal analysis is based on 6 months of continuous acceleration records providing seasonal and diurnal variations of the natural frequencies of the bridge and the modal damping ratios. Temperature effects were observed with details that are scarcely available in the literature. In particular, the pronounced daily fluctuations of natural frequencies and seasonal effects are documented.


Suspension bridge Full-scale Ambient vibrations Modal parameters Temperature effects 



The authors are grateful to the Norwegian Public Road Administration for the support of and the assistance during the measurement campaign at the Lysefjord Bridge.


  1. 1.
    Allemang, R.J., Brown, D.L.: A correlation coefficient for modal vector analysis. In: Proceedings of the 1st International Modal Analysis Conference, SEM, Orlando, vol.1, pp.110–116 (1982)Google Scholar
  2. 2.
    Brownjohn, J.M.W., Dumanoglu, A.A., Severn, R.T., Taylor, C.A.: Ambient vibration measurements of the Humber Suspension Bridge and comparison with calculated characteristics. Proc. Inst. Civil Eng. 83 (3), 561–600 (1987)Google Scholar
  3. 3.
    Brownjohn, J.M.W., Magalhaes, F., Caetano, E., Cunha, A.: Ambient vibration re-testing and operational modal analysis of the Humber Bridge. Eng. Struct. 32 (8), 2003–2018 (2010). doi: 10.1016/j.engstruct.2010.02.034
  4. 4.
    Cheynet, E., Bogunovic’ Jakobsen, J., Snæbjörnsson, J.: Buffeting response of a suspension bridge in complex terrain. Eng. Struct. 128, 474–487 (2016). doi: 10.1016/j.engstruct.2016.09.060
  5. 5.
    de Battista, N., Brownjohn, J.M.W., Pink Tan, H., Koo, K.-Y.: Measuring and modelling the thermal performance of the Tamar Suspension Bridge using a wireless sensor network. Struct. Infrastruct. Eng. 11 (2), 176–193 (2015). doi: 10.1080/15732479.2013.862727
  6. 6.
    Ding, Y., Li, A.: Temperature-induced variations of measured modal frequencies of steel box girder for a long-span suspension bridge. Int. J. Steel Struct. 11 (2), 145–155 (2011). doi: 10.1007/s13296-01120044
  7. 7.
    Kim, C.-Y., Jung, D.-S., Kim, N.-S., Kwon, S.-D., Feng, M.Q.: Effect of vehicle weight on natural frequencies of bridges measured from traffic-induced vibration. Earthquake Eng. Eng. Vib. 2 (1), 109–115 (2003). doi: 10.1007/BF02857543
  8. 8.
    Koo, K.Y., Brownjohn, J.M.W., List, D.I., Cole, R.: Structural health monitoring of the Tamar suspension bridge. Struct. Control Health Monit. 20 (4), 609–625 (2013)CrossRefGoogle Scholar
  9. 9.
    Macdonald, J.H.G.: Evaluation of buffeting predictions of a cable-stayed bridge from full-scale measurements. J. Wind Eng. Ind. Aerodyn. 91 (12–15), 1465–1483 (2003). doi: 10.1016/j.jweia.2003.09.009. ISSN:0167-6105
  10. 10.
    Magalhães, F., Cunha, À.: Explaining operational modal analysis with data from an arch bridge. Mech. Syst. Signal Process. 25 (5), 1431–1450 (2011). doi: 10.1016/j.ymssp.2010.08.001. ISSN: 0888-3270
  11. 11.
    Magalhães, F., Cunha, À., Caetano, E.: Online automatic identification of the modal parameters of a long span arch bridge. Mech. Syst. Signal Process. 23 (2), 316–329 (2009). doi: 10.1016/j.ymssp.2008.05.003. ISSN: 0888-3270
  12. 12.
    Sigbjörnsson, R., Hjorth-Hansen, E.: Along-wind response of suspension bridges with special reference to stiffening by horizontal cables. Eng. Struct. 3 (1), 27–37 (1981)CrossRefGoogle Scholar
  13. 13.
    Siringoringo, D.M., Fujino, Y.: System identification of suspension bridge from ambient vibration response. Eng. Struct. 30 (2), 462–477 (2008). doi: 10.1016/j.ymssp.2008.05.003
  14. 14.
    Sohn, H., Dzwonczyk, M., Straser, E.G., Kiremidjian, A.S., Law, K.H., Meng, T.: An experimental study of temperature effect on modal parameters of the Alamosa Canyon Bridge. Earthquake Eng. Struct. Dyn. 28 (8), 879–897 (1999). ISSN: 1096-9845Google Scholar
  15. 15.
    Steigen, R.O.: Modeling and analyzing a suspension bridge in light of deterioration of the main cable wires. MA thesis. University of Stavanger (2011)Google Scholar
  16. 16.
    Strømmen, E.N.: Eigenvalue calculations of continuous systems. In: Structural Dynamics, pp.89–159. Springer International Publishing, Cham (2014). doi:  10.1007/9783319018027_3. ISBN: 978-3-319-01802-7
  17. 17.
    Tveiten, J.: Dynamic analysis of a suspension bridge. MA thesis. University of Stavanger (2012)Google Scholar
  18. 18.
    Westgate, R., Koo, K.-Y., Brownjohn, J.: Effect of solar radiation on suspension bridge performance. J. Bridge Eng. 20 (5), 04014077 (2014). doi: 10.1061/ (ASCE)BE.19435592.0000668 CrossRefGoogle Scholar
  19. 19.
    Xia, Y., Chen, B., Weng, S., Ni, Y.Q., Xu, Y.L.: Temperature effect on vibration properties of civil structures: a literature review and case studies. J. Civ. Struct. Health Monit. 2 (1), 29–46 (2012). doi: 10.1007/s13349- 01100157
  20. 20.
    Xia, Y., Chen, B., Zhou, X.Q., Xu, Y.L.: Field monitoring and numerical analysis of Tsing Ma Suspension Bridge temperature behavior. Struct. Control Health Monit. 20 (4), 560–575 (2013). doi: 10.1002/ stc.515 CrossRefGoogle Scholar
  21. 21.
    Xu, Y.L., Chen, B., Ng, C.L., Wong, K.Y., Chan, W.Y.: Monitoring temperature effect on a long suspension bridge. Struct. Control Health Monit. 17 (6), 632–653 (2010). doi: 10.1002/ stc.340 Google Scholar
  22. 22.
    Zhou, L., Xia, Y., Brownjohn, J.M.W., Young Koo, K.: Temperature analysis of a long-span suspension bridge based on field monitoring and numerical simulation. J. Bridge Eng. 21 (1), 04015027 (2016). doi: 10.1061/ (ASCE)BE.19435592.0000786 CrossRefGoogle Scholar

Copyright information

© The Society for Experimental Mechanics, Inc. 2017

Authors and Affiliations

  • Etienne Cheynet
    • 1
    Email author
  • Jonas Snæbjörnsson
    • 1
    • 2
  • Jasna Bogunović Jakobsen
    • 1
  1. 1.Department of Mechanical and Structural Engineering and Materials ScienceUniversity of StavangerStavangerNorway
  2. 2.School of Science and EngineeringReykjavik UniversityReykjavíkIceland

Personalised recommendations