Skip to main content

Overview of Peripheral Arterial Disease of the Lower Extremity

  • Chapter
  • First Online:
Noninvasive Vascular Diagnosis

Abstract

The overall prevalence of peripheral arterial disease (PAD) based on objective data has been evaluated in several epidemiological studies and is in the range of 3–10%, which increases to 10–20% in people over the age of 70 years. The prevalence of asymptomatic PAD of the lower extremity can only be estimated using noninvasive vascular testing in the general population with the ankle-brachial index (ABI) being the most widely used.

A number of risk factors for the development of atherosclerosis have been reasonably well established. These factors include hypertension, hypercholesterolemia, cigarette smoking, obesity, diabetes mellitus, stress, sedentary lifestyle, and family history.

Intermittent claudication as a symptom of peripheral arterial disease can be caused by flow-limiting stenosis, which is predominately secondary to atherosclerosis.

After the initial diagnosis of chronic lower extremity ischemia is made, it is important to stage the severity of the process accurately. This is crucial because the stage of the disease determines the natural history and outcome and which therapy is the most appropriate.

A variety of noninvasive tests are available for assessment of the lower extremity vascular system. Perhaps the most useful bedside noninvasive test available to the clinician is the ABI. The most commonly employed noninvasive testings used to confirm the disease, assess severity, and help its localization are segmental Doppler pressure, pulse volume recordings, and duplex ultrasound. Other important imaging modalities for determining the management strategies include magnetic resonance angiography (MRA), computed tomography angiography (CTA), and catheter-based angiography.

This chapter will review the basic anatomy, pathophysiology, clinical presentation, various noninvasive tests, and imaging for the diagnosis of peripheral arterial disease (PAD) of the lower extremities. It will also highlight the management outlines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Crafts RC. Lower limb. In: Crafts RC, editor. A textbook of human anatomy. New York: John Wiley; 1985. p. 397–517.

    Google Scholar 

  2. Taylor LM, Porter JM, Winck T. Femoropopliteal occlusive disease. In: Greenfield LJ, editor. Surgery: scientific principles and practice. 2nd ed. Philadelphia: JB Lippincott; 1997. p. 1810–23.

    Google Scholar 

  3. Zarins CK, Glagov S. Artery wall pathology in atherosclerosis. In: Rutherford RB, editor. Vascular surgery. 4th ed. Philadelphia: WB Saunders; 1995. p. 203–21.

    Google Scholar 

  4. Norgren L, Hiatt WR, Dormandy JA, Nehler MR, Harris KA, Fowkes FGR, on behalf of the TASC II Working Group. Inter-society consensus for the management of peripheral arterial disease (TASC II). J Vasc Surg. 2007, 45;(Suppl S):S5–67.

    Google Scholar 

  5. Selvin E, Erlinger TP. Prevalence of and risk factors for peripheral arterial disease in the United States: results from the National Health and Nutrition Examination Survey 1999–2000. Circulation. 2004;110(6):748–3.

    Article  Google Scholar 

  6. Fowkes FG, Rudan D, Rudan I, et al. Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: a systematic review and analysis. Lancet. 2013;382(9901):1329–40.

    Article  PubMed  Google Scholar 

  7. Hirsch A, Criqui M, Treat-Jacobson D, Regensteiner J, Creager M, Olin J, et al. Peripheral arterial disease detection, awareness, and treatment in primary care. JAMA. 2001;286(11):1317–24.

    Article  CAS  PubMed  Google Scholar 

  8. Merino J, Planas A, Elosua R, de Moner A, Gasol A, Contreras C, Vidal-Barraquer F, Clara A. Incidence and risk factors of peripheral arterial occlusive disease in a prospective cohort of 700 adult elderly men followed for 5 years. World J Surg. 2010;34:1975–9.

    Article  PubMed  Google Scholar 

  9. Fowkes FG, Housley E, Cawood EH, Macintyre CC, Ruckley CV, Prescott RJ. Edinburgh Artery Study: prevalence of asymptomatic and symptomatic peripheral arterial disease in the general population. Int J Epidemiol. 1991;20:384–92.

    Article  CAS  PubMed  Google Scholar 

  10. Selvin E, Marinopoulos S, Berkenblit G, Rami T, Brancati FI, Powe NR, et al. Meta-analysis: glycosylated hemoglobin and cardiovascular disease in diabetes mellitus. Ann Intern Med. 2004;141(6):421–31.

    Article  CAS  PubMed  Google Scholar 

  11. Muntner P, Wildman RP, Reynolds K, Desalvo KB, Chen J, Fonseca V. Relationship between HbAIc level and peripheral arterial disease. Diabetes Care. 2005;28(8):1981–7.

    Article  PubMed  Google Scholar 

  12. Peripheral ADA. arterial disease in people with diabetes. Diabetes Care. 2003;26(12):3333–41.

    Article  Google Scholar 

  13. Dormandy J, Heeck L, Vig S. Predictors of early disease in the lower limbs. Semin Vasc Surg. 1999;12:109–17.

    CAS  PubMed  Google Scholar 

  14. Hikita H, Shigeta T, Kimura S, et al. Coronary artery disease severity and cardiovascular biomarkers in patients with peripheral artery disease. Int J Angiol. 2015;24(4):278–82.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Khandanpour N, Loke YK, Meyer FJ, et al. Homocysteine and peripheral arterial disease: systematic review and meta-analysis. Eur J Vasc Endovasc Surg. 2009;38(3):316–22.

    Article  CAS  PubMed  Google Scholar 

  16. Ridker PM, Stampfer MJ, Rifai N. Novel risk factors for systemic atherosclerosis: a comparison of C-reactive protein, fibrinogen, homocysteine, lipoprotein (a), and standard cholesterol screening as predictors of peripheral arterial disease. JAMA. 2001;285(19):2481–5.

    Article  CAS  PubMed  Google Scholar 

  17. Yamasaki S, Izawa A, Koshikawa M, et al. Association between estimated glomerular filtration rate and peripheral arterial disease. J Cardiol. 2015;66(5):430–4.

    Article  PubMed  Google Scholar 

  18. O’Hare AM, Vittinghoff E, Hsia J, Shlipak MG. Renal insufficiency and the risk of lower extremity peripheral arterial disease: results from the Heart and Estrogen/Progestin Replacement Study (HERS). J am Soc Nephrol. 2004;15(4):1046–51.

    Article  PubMed  CAS  Google Scholar 

  19. Kullo IJ, Bailey KR, Kardia SL, Mosley TH Jr, Boerwinkle E, Turner ST. Ethnic differences in peripheral arterial disease in the NHLBI Genetic Epidemiology Network of Arteriopathy (GENOA) study. Vasc Med. 2003;8(4):237–42.

    Article  PubMed  Google Scholar 

  20. Alzamora MT, Fores R, Baena-Diez JM, Pera G, Torar P, Sorribes M, Bicheto M, Reina MD, Sancho A, Albaladejo C, Llussa J, the PERART/ARTPER Study Group. The peripheral arterial disease study (PERART/ARTPER) prevalence and risk factors in the general population. BNC. Public Health. 2010;10:38.

    PubMed  PubMed Central  Google Scholar 

  21. TransAtlantic Inter-Society Consensus (TASC) Working Group. Management of peripheral arterial disease (PAD). J Vasc Surg. 2000;31:S5–S44. S54–74

    Article  Google Scholar 

  22. Murabito JM, D’Agostino RG, Silbershatz H, Wilson WF. Intermittent claudication: a risk profile from the Framing-ham heart study. Circulation. 1997;96:44–9.

    Article  CAS  PubMed  Google Scholar 

  23. Reinecke H, Unrath M, Freisinger E, et al. Peripheral arterial disease and critical limb ischaemia: still poor outcomes and lack of guideline adherence. Eur Heart J. 2015;36(15):932–8.

    Article  PubMed  Google Scholar 

  24. Young DF, Cholvin NR, Kirkeeide RL, Roth AC. Hemodynamics of arterial stenosis at elevated flow rates. Circ Res. 1977;41:99–107.

    Article  CAS  PubMed  Google Scholar 

  25. Arfvidsson B, Wennmalm A, Gelin J, Dahllof AG, Hallgren B, Lundholm K. Covariation between walking ability and circulatory alterations in patients with intermittent claudication. Eur J Vasc Surg. 1992;6:642–6.

    Article  CAS  PubMed  Google Scholar 

  26. Hiatt WR. Nonoperative, nonpharmacologic management of lower extremity occlusive disease. In: Ernst CB, Stanley JC, editors. Current therapy in vascular surgery. Philadelphia: Mosby; 2000. p. 530–3.

    Google Scholar 

  27. Hiatt WR, Wolfel EE, Regensteiner JG, Brass EP. Skeletal muscle carnitine metabolism in patients with unilateral peripheral arterial disease. J Appl Physiol. 1992;73:346–53.

    CAS  PubMed  Google Scholar 

  28. Ross R, Glomset JA. The pathogenesis of atherosclerosis. N Engl J Med. 1976;295:369–77.

    Article  CAS  PubMed  Google Scholar 

  29. Taylor KE, Glagov S, Zarins CK. Preservation and structural adaptation of endothelium over experimental foam cell lesions. Arteriosclerosis. 1989;9:881–94.

    Article  CAS  PubMed  Google Scholar 

  30. Faggiotto A, Ross R. Studies of hypercholesterolemia in the nonhuman primate. II. Fatty streak conversion to fibrous plaque. Arteriosclerosis. 1984;4:341–56.

    Article  CAS  PubMed  Google Scholar 

  31. Glagov S, Zarins CK, Giddens DP, et al. Atherosclerosis: what is the nature of the plaque? In: Strandness Jr DE, Didishiem P, Clowes AW, et al., editors. Vascular diseases: current research and clinical application. Orlando: Grune & Stratton; 1987. p. 15–33.

    Google Scholar 

  32. A Coordination Group in China. A pathological survey of atherosclerotic lesions of coronary artery and aorta in China. Pathol Res Pract. 1985;180:457–62.

    Article  Google Scholar 

  33. Stevens SL, Hilgarth K, Ryan VS, et al. The synergistic effect of hypercholesterolemia and mechanical injury on intimal hyperplasia. Ann Vasc Surg. 1992;6:55.

    Article  CAS  PubMed  Google Scholar 

  34. Caro CG, Fitz-Gerald JM, Schroter RC, et al. Atheroma and arterial wall shear. Observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis. Proc R Soc Lond B Biol Sci. 1971;177(46):109–59.

    Article  CAS  PubMed  Google Scholar 

  35. Fry DL. Acute vascular endothelial changes associated with increased blood velocity gradients. Circ Res. 1968;22:165–97.

    Article  CAS  PubMed  Google Scholar 

  36. Mehdizadeh A, Norouzpour A. New insights in atherosclerosis: endothelial shear stress as promoter rather than initiator. Med Hypotheses. 2009;73(6):989–93.

    Article  PubMed  Google Scholar 

  37. Benditt EP. Implications of the monoclonal character of human atherosclerotic plaques. Am J Pathol. 1977;86:693–702.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. McCaffrey TA, Du B, Fu C, et al. The expressions of TGF-beta receptors in human atherosclerosis: evidence of acquired resistance to apoptosis due to receptor imbalance. J Mol Cell Cardiol. 1999;31:162T.

    Article  Google Scholar 

  39. Steinberg D, Parthasarathy S, Carew T, et al. Modifications of low density lipoprotein that increase its atherogenicity. N Engl J Med. 1989;320:915–24.

    Article  CAS  PubMed  Google Scholar 

  40. Karayannacos PE, Talukder N, Nerem R, et al. The rule of multiple noncritical arterial stenoses in the pathogenesis of ischemia. J Thorac Cardiovasc Surg. 1977;73:458–69.

    CAS  PubMed  Google Scholar 

  41. Cronenwett JL. Arterial hemodynamics. In: Greenfield LJ, editor. Surgery—scientific principles and practice. 2nd ed. Philadelphia: JB Lippincott; 1997. p. 1656–67.

    Google Scholar 

  42. Imparato AM, Kim GE, Davidson T, et al. Intermittent claudication: its natural course. Surgery. 1975;78:795–9.

    CAS  PubMed  Google Scholar 

  43. Boyd AM. The natural course of arteriosclerosis of lower extremities. Proc R Soc Med. 1962;55:591–3.

    CAS  PubMed  Google Scholar 

  44. Bloor K. Natural history of atherosclerosis of the lower extremities. Ann R Coll Surg Engl. 1961;28:36–51.

    Google Scholar 

  45. Dormandy JA, Heeck L, Vig S. The natural history of claudication: Risk to life and limb. Semin Vasc Surg. 1999;12:123–37.

    CAS  PubMed  Google Scholar 

  46. Weitz JI, Byrne J, Clagett GP, Farkouh ME, Porter JM, Sackett DL, Strandness DE Jr, Taylor LM. Diagnosis and treatment of chronic arterial insufficiency of the lower extremities: a critical review. Circulation. 1996;94:3026–49.

    Article  CAS  PubMed  Google Scholar 

  47. Dormandy JA, Murray GD. The fate of the claudicant: a prospective study of 1969 claudicants. Eur J Vasc Surg. 1991;5:131–3.

    Article  CAS  PubMed  Google Scholar 

  48. Criqui MH, Rd L, Fronek A, Feigelson HS, Klauber MR, McCann TJ, Browner D. Mortality over a period of ten years in patients with peripheral arterial disease. N Engl J Med. 1992;326:381–6.

    Article  CAS  PubMed  Google Scholar 

  49. McDermott MM, Feinglass J, Slavensky R, Pierce WH. The ankle-brachial index as predictor of survival in patients with peripheral vascular disease. J Gen Intern Med. 1994;9:445–9.

    Article  CAS  PubMed  Google Scholar 

  50. Sheikh MA, Bhatt DL, Li J, Lin S, Bartholomew JR. Usefulness of post-exercise ankle-brachial index to predict all-cause mortality. Am J Cardiol. 2011;107:778–82.

    Article  PubMed  Google Scholar 

  51. Aboyans V, Desormais I, Lacroix P, Salazar J, Criqui MH, Laskar M. The general prognosis of patients with peripheral arterial disease differs according to the disease localization. J Am Coll Cardiol. 2010;55:898–903.

    Article  PubMed  Google Scholar 

  52. Rutherford RB, Baker JD, Ernst C, Johnston KW, Porter JM, Ahn S, Jones DN. Recommended standards for reports dealing with lower extremity ischemia: Revised version. J Vasc Surg. 1997;26:517–38.

    Article  CAS  PubMed  Google Scholar 

  53. Ramos R, Garcia-Gil M, Comas-Cufi M, et al. Statins for prevention of cardiovascular events in a low-risk population with low ankle brachial index. J Am Coll Cardiol. 2016;67(6):630–40.

    Article  CAS  PubMed  Google Scholar 

  54. Peabody CN, Kannel WB, McNamara PM. Intermittent claudication: Surgical significance. Arch Surg. 1974;109:693–7.

    Article  CAS  PubMed  Google Scholar 

  55. Veith FJ, Gupta SK, Wengerter KR, et al. Changing arteriosclerotic disease patterns and management strategies in lower-limb-threatening ischemia. Ann Surg. 1990;212:402–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dormandy J, Belcher G, Broos P, Eikelboom B, Laszlo G, Konrad P, et al. Prospective study of 713 below-knee amputations for ischaemia and the effect of a prostacyclin analogue on healing. Hawaii Study Group. Br J Surg. 1994;81(1):33–7.

    Article  CAS  PubMed  Google Scholar 

  57. Yao JST. New techniques in objective arterial evaluation. Arch Surg. 1973;106:600–4.

    Article  CAS  PubMed  Google Scholar 

  58. AbuRahma AF, Khan S, Robinson PA. Selective use of segmental Doppler pressures and color duplex imaging in the localization of arterial occlusive disease of the lower extremity. Surgery. 1995;118:496–503.

    Article  CAS  PubMed  Google Scholar 

  59. Toursarkissian B, Mejia A, Smilanich RP, Schoolfield J, Shireman PK, Sykes MT. Noninvasive localization of infrainguinal arterial occlusive disease in diabetics. Ann Vasc Surg. 2001;15:73–8.

    Article  CAS  PubMed  Google Scholar 

  60. Holland T. Utilizing the ankle brachial index in clinical practice. Ostomy Wound Manage. 2002;48:38–40.

    PubMed  Google Scholar 

  61. Adam DJ, Naik J, Hartshorne T, Bello M, London NJ. The diagnosis and management of 689 chronic leg ulcers in a single-visit assessment clinic. Eur J Vasc Endovasc Surg. 2003;25:462–8.

    Article  CAS  PubMed  Google Scholar 

  62. Carser DG. Do we need to reappraise our method of interpreting the ankle brachial pressure index? J Wound Care. 2001;10:59–62.

    Article  CAS  PubMed  Google Scholar 

  63. Satomura S, Kaneko Z. Ultrasonic blood rheograph. Proceedings of the third international conference on medical electronics, London, 1960, pp. 254.

    Google Scholar 

  64. Strandness DE Jr, McCutcheon EP, Rushmer RF. Application of transcutaneous Doppler flow meter in evaluation of occlusive arterial disease. Surg Gynecol Obstet. 1966;122:1039–45.

    PubMed  Google Scholar 

  65. Landowne M, Katz LN. A critique of the plethysmographic method of measuring blood flow in the extremities of man. Am Heart J. 1942;23:644–75.

    Article  Google Scholar 

  66. Hertzman AP. The blood supply of various skin area as estimated by the photoelectric plethysmograph. Am J Physiol. 1938;124:328–40.

    Google Scholar 

  67. Barnes RW, Clayton JM, Bone GE, et al. Supraorbital photo-pulse plethysmography: simple accurate screening from carotid occlusive disease. J Surg Rx. 1977;22:319–27.

    Article  CAS  Google Scholar 

  68. Eldrup-Jorgensen SV, Schwartz SI, Wallace JD. A method of clinical evaluation of peripheral circulation: photoelectric hemodensitometry. Surgery. 1966;59:505–13.

    CAS  PubMed  Google Scholar 

  69. Barnes RW, Garrett WV, Slaymaker EE, et al. Doppler ultrasound and supraorbital photoplethysmography for noninvasive screening of carotid occlusive disease. Am J Surg. 1977;134:183–6.

    Article  CAS  PubMed  Google Scholar 

  70. Barnes RW, Garrett WV, Hommel BA, et al. Photoplethysmography assessment of altered cutaneous circulation in the post-phlebitic syndrome. Proc Assoc Adv Med Instrum. 1978;13:25–9.

    Google Scholar 

  71. Bortolotto LA, Blacher J, Kondo T, Takazawa K, Safar ME. Assessment of vascular aging and atherosclerosis in hypertensive subjects: second derivative of photoplethysmogram versus pulse wave velocity. Am J Hypertens. 2000;13:165–71.

    Article  CAS  PubMed  Google Scholar 

  72. Whitney RJ. The measurement of changes in human limb volume by means of mercury-n-rubber strain gauge. J Physiol. 1949;109:5P.

    Google Scholar 

  73. Hokanson DE, Sumner DS, Strandness DE Jr. An electrically calibrated plethysmography for direct measurement of limb blood flow. IEEE Trans Biomed Eng. 1975;BME–22:25–9.

    Article  Google Scholar 

  74. Barnes RW, Hokanson DE, KK W, et al. Detection of deep vein thrombosis with an automatic electrically calibrated strain gauge plethysmograph. Surgery. 1977;82:219–23.

    CAS  PubMed  Google Scholar 

  75. Yao JST, Needham TN, Gourmoos C, Irvine WT. A comparative study of strain-gauge plethysmography and Doppler ultrasound in the assessment of occlusive arterial disease of the lower extremities. Surgery. 1972;71:4–9.

    CAS  PubMed  Google Scholar 

  76. Winsor T. The segmental plethysmograph: description of the instrument. Angiology. 1957;8:87–101.

    Article  CAS  PubMed  Google Scholar 

  77. Darling RC, Raines VK, Brenner V, et al. Quantitative segmental pulse volume recorder. A clinical tool. Surgery. 1972;72:873–7.

    CAS  PubMed  Google Scholar 

  78. Nicholaides A. Quantitative air-plethysmography in management of arterial ischemia. In: Bernstein EF, editor. Vascular diagnosis. 4th ed. St. Louis: Mosby; 1993. p. 544–6.

    Google Scholar 

  79. Strandness DE Jr. Wave form analysis in the diagnosis of arteriosclerosis obliterans and peripheral arterial disease, a physiologic approach. Boston: Little Brown & Co.; 1969. p. 92–113.

    Google Scholar 

  80. Kuvin JT, Patel AR, Sliney KA, Pandian NG, Sheffy J, Schnall RP, Karas RH, Udelson JE. Assessment of peripheral vascular endothelial function with finger arterial pulse wave amplitude. Am Heart J. 2003;146:168–74.

    Article  PubMed  Google Scholar 

  81. Gundersen J. Segmental measurement of systolic blood pressure in the extremities including the thumb and the great toe. Acta Chir Scand. 1972;Suppl. 426:1–90.

    Google Scholar 

  82. Rich K. Transcutaneous oxygen measurements: implications for nursing. J Vasc Nurs. 2001;19:55–9.

    Article  CAS  PubMed  Google Scholar 

  83. Kram HB, Appel PL, Shoemaker WC. Multisensor transcutaneous oximetric mapping to predict below-knee amputation wound healing: use of a critical PO2. J Vasc Surg. 1989;9:796–800.

    CAS  PubMed  Google Scholar 

  84. Wang Z, Hasan R, Firwana B, et al. A systematic review and meta-analysis of tests to predict wound healing in diabetic foot. J Vasc Surg. 2016;63(2 Suppl):29S–36S.

    Article  PubMed  Google Scholar 

  85. Belcaro G, et al. Evaluation of skin blood flow and venoarteriolar response in patients with diabetes and peripheral vascular disease by laser Doppler flowmetry. Angiology. 1989;40:953–7.

    Article  CAS  PubMed  Google Scholar 

  86. Eicke BM, Milke K, Schlereth T, Birklein F. Comparison of continuous wave Doppler ultrasound of the radial artery and laser Doppler flowmetry of the fingertips with sympathetic stimulation. J Neurol. 2004;251:958–62.

    Article  PubMed  Google Scholar 

  87. Kubli S, Waeber B, Dalle-Ave A, Feihl F. Reproducibility of laser Doppler imaging of skin blood flow as a tool to assess endothelial function. J Cardiovasc Pharmacol. 2000;36:640–8.

    Article  CAS  PubMed  Google Scholar 

  88. Correa MJU, Andrade LEC, Kayser C. Comparison of laser Doppler imaging, fingertip lacticemy test, and nailfold capillaroscopy for assessment of digital microcirculation in systemic sclerosis. Arthritis Res Ther. 2010;12:R157.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Monstrey SM, Hoeksema H, Baker RD, Jeng J, Spence RS, Wilson D, Pape SA. Burn wound healing time assessed by laser Doppler imaging. Part 2: validation of a dedicated colour code for image interpretation. Burns. 2011;37:249–56.

    Article  CAS  PubMed  Google Scholar 

  90. Terry HJ. The electromagnetic measurement of blood flow during arterial surgery. Biomed Eng. 1972;7:466–74.

    CAS  PubMed  Google Scholar 

  91. Masaryk TJ, Modic MT, Ruggieri PM, et al. Three dimensional (volume) gradient-echo imaging of the carotid bifurcation: preliminary clinical experience. Radiology. 1989;171:801–6.

    Article  CAS  PubMed  Google Scholar 

  92. Menke J, Larsen J. Meta-analysis: accuracy of contrast-enhanced magnetic resonance angiography for assessing steno-occlusions in peripheral arterial disease. Ann Intern Med. 2010;153:325–34.

    Article  PubMed  Google Scholar 

  93. Diop AD, Braidy C, Habouchi A, et al. Unenhanced 3D turbo spin-echo MR angiography of lower limbs in peripheral arterial disease: a comparative study with gadolinium-enhanced MR angiography. AJR Am J Roentgenol. 2014;200(5):1145–50.

    Article  Google Scholar 

  94. Collins R, Cranny G, Burch J, et al. A systematic review of duplex ultrasound, magnetic resonance angiography and computed tomography angiography for the diagnosis and assessment of symptomatic, lower limb peripheral arterial disease. Health Technol Assess. 2007;11:iii–xiii. 1–184

    Google Scholar 

  95. Sacks D. Peripheral arterial duplex ultrasonography. Semin Roentgenol. 1992;27:28–38.

    Article  CAS  PubMed  Google Scholar 

  96. London NJ, Sensier Y, Hartsborne T. Can lower limb ultrasonography replace arteriography? Vasc Med. 1996;1:115–9.

    Article  CAS  PubMed  Google Scholar 

  97. Borrello JA. MR angiography versus conventional X-ray angiography in the lower extremities: everyone wins. Radiology. 1993;187:615–7.

    Article  CAS  PubMed  Google Scholar 

  98. Goyen M, Ruehm SG, Debatin JF. MR angiography for assessment of peripheral vascular disease. Radiol Clin North Am. 2002;40:835–46.

    Article  PubMed  Google Scholar 

  99. Lee SI, Miller JC, Abbara S, et al. Coronary CT angiography. J Am Coll Radiol. 2006;3:560–4.

    Article  PubMed  Google Scholar 

  100. Willmann JK, Baumert B, Schertler T, et al. Aortoiliac and lower extremity arteries assessed with 16-detector row CT angiography: prospective comparison with digital subtraction angiography. Radiology. 2005;236:1083–93.

    Article  PubMed  Google Scholar 

  101. Catalano C, Fraioli F, Laghi A, et al. Infrarenal aortic and lower extremity arterial disease: diagnostic performance of multi-detector row CT angiography. Radiology. 2004;231:555–63.

    Article  PubMed  Google Scholar 

  102. Shareghi S, Gopal A, Gul K, et al. Diagnostic accuracy of 64 multidetector computed tomographic angiography in peripheral vascular disease. Catheter Cardiovasc Interv. 2010;75(1):23–31.

    PubMed  Google Scholar 

  103. Brenner DJ, Hall EJ. Computed tomography – an increasing source of radiation exposure. N Engl J Med. 2007;357:2277–84.

    Article  CAS  PubMed  Google Scholar 

  104. Zhou W. Radiation exposure of vascular surgery patients beyond endovascular procedures. J Vasc Surg. 2011;53:39S–43S.

    Article  PubMed  Google Scholar 

  105. Turnipseed WD. Diagnosis of carotid artery disease by digital subtraction angiography. In: AbuRahma AF, Diet-rich EB, editors. Current noninvasive vascular diagnosis. Littleton: PSG Publishing; 1988. p. 337–55.

    Google Scholar 

  106. Katayama H, Yamaguchi K, Kozuka T, et al. Adverse reactions to ionic and nonionic contrast media: a report from the Japanese Committee on the safety of contrast media. Radiology. 1990;175:621–8.

    Article  CAS  PubMed  Google Scholar 

  107. AbuRahma AF, Robinson PA, Boland JP, et al. Complications of arteriography in a recent series of 707 cases: Factors affecting outcome. Ann Vasc Surg. 1993;7:122–9.

    Article  CAS  PubMed  Google Scholar 

  108. Balduf LM, Langsfeld M, Marek JM, et al. Complication rates of diagnostic angiography performed by vascular surgeons. Vasc Endovasc Surg. 2002;36:439–45.

    Article  Google Scholar 

  109. AbuRahma AF, Elmore M, Deel J, Mullins B, Hayes J. Complications of diagnostic arteriography performed by a vascular surgeon in a recent series of 558 patients. Vascular. 2007;15:92–7.

    Article  PubMed  Google Scholar 

  110. Pedersen TR, Kjekshus J, Pyorala K, Olsson AG, Cook TJ, Musliner TA, Robert JA, Haghfelt T. Effect of simvastatin on ischemic signs and symptoms in the Scandinavian Simvastatin Survival Study (4S). Am J Cardiol. 1998;81:333–8.

    Article  CAS  PubMed  Google Scholar 

  111. Gould AL, Rossouw JE, Santanello NC, Heyse JF, Furberg CD. Cholesterol reduction yields clinical benefit: impact of statin trials. Circulation. 1998;97:946–52.

    Article  CAS  PubMed  Google Scholar 

  112. Aung PP, Maxwell H, Jepson RG, Price J, Leng GC. Lipid-lowering for peripheral arterial disease of the lower limb (review). Cochrane Database Syst Rev. 2007;17(4):CD000123.

    Google Scholar 

  113. Rooke TW, Hirsch AT, Misra S, et al. Management of patients with peripheral artery disease (compilation of 2005 and 2011 ACCF/AHA Guideline Recommendations): a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2013;61(14):1555–70.

    Article  PubMed  Google Scholar 

  114. Bylund AC, Hammarsten J, Holm J, et al. Enzyme activities in skeletal muscles from patients with peripheral arterial insufficiency. Eur J Clin Invest. 1976;6:425–9.

    Article  CAS  PubMed  Google Scholar 

  115. Gardner AW, Poehlman ET. Exercise rehabilitation programs for the treatment of claudication pain: a meta-analysis. JAMA. 1995;274:975–80.

    Article  CAS  PubMed  Google Scholar 

  116. Regensteiner JG, Steiner JF, Hiatt WR. Exercise training improves functional status in patients with peripheral arterial disease. J Vasc Surg. 1996;23:104–15.

    Article  CAS  PubMed  Google Scholar 

  117. Sakamoto S, Yokoyama N, Tamori Y, Akutsu K, Hashimoto H, Takeshita S. Patients with peripheral artery disease who completed 12-week supervised exercise training program show reduced cardiovascular mortality and morbidity. Circ J. 2009;73:167–73.

    Article  PubMed  Google Scholar 

  118. McDermott MM, Ades P, Guralnik JM, Dyer A, Ferrucci L, Liu K, Nelson M, Lloyd-Jones D, van Horn L, Garside D, Kibbe M, et al. Treadmill exercise and resistance training in patients with peripheral arterial disease with and without intermittent claudication: a randomized controlled trial. JAMA. 2009;301(2):165–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Muller R. Hemorrheology and peripheral vascular disease. A new therapeutic approach. J Med. 1981;12:209–35.

    CAS  PubMed  Google Scholar 

  120. Porter JM, Cutler BS, Lee BY, et al. Pentoxifylline efficacy in the treatment of intermittent claudication. Am Heart J. 1982;104:66–72.

    Article  CAS  PubMed  Google Scholar 

  121. AbuRahma AF, Woodruff BA. Effects and limitations of pentoxifylline therapy in various stages of peripheral vascular disease of the lower extremity. Am J Surg. 1990;160:266–70.

    Article  CAS  PubMed  Google Scholar 

  122. Dawson DL, Cutler BS, Hiatt WR, et al. A comparison of cilostazol and pentoxifylline for treating intermittent claudication. Am J Med. 2000;109(7):523–30.

    Article  CAS  PubMed  Google Scholar 

  123. Robless P, Mikhailidis DP, Stansby GP. Cilostazol for peripheral arterial disease (review). Cochrane Database Syst Rev. 2008;23(1):CD003748.

    Google Scholar 

  124. Bedenis R, Stewart M, Cleanthis M, et al. Cilostazol for intermittent claudication. Cochrane Database Syst Rev. 2014;31(10):CD003748.

    Google Scholar 

  125. Hiatt WR. Medical treatment of peripheral arterial disease and claudication. N Engl J Med. 2001;344:1608–21.

    Article  CAS  PubMed  Google Scholar 

  126. ATC. Collaborative meta-analysis of randomized trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. Br Med J. 2002;324:71–86.

    Article  Google Scholar 

  127. Clagett P, Sobel M, Jackson M, Lip G, Tangelder M, Verhaeghe R. Antithrombotic therapy in peripheral arterial disease: the seventh ACCP conference on antithrombotic and thrombolytic therapy. Chest. 2004;126:S609–26.

    Article  Google Scholar 

  128. Comerota AJ. Endovascular and surgical revascularization for patients with intermittent claudication. Am J Cardiol. 2001;87:34D–43D.

    Article  CAS  PubMed  Google Scholar 

  129. Bates MC, AbuRahma AF. An update on endovascular therapy of the lower extremities. J Endovasc Therapy. 2004;11:II-107–27.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali F. AbuRahma MD .

Editor information

Editors and Affiliations

Review Questions

Review Questions

  1. 1.

    What resting ankle-brachial index (ABI) is most often used as a hemodynamic definition of peripheral arterial disease?

    1. a.

      ≤0.4

    2. b.

      ≤0.7

    3. c.

      ≤0.9

    4. d.

      ≤1.1

  2. 2.

    What is the clinical presentation of peripheral arterial disease?

    1. a.

      Critical limb ischemia with rest pain

    2. b.

      Critical limb ischemia with tissue loss

    3. c.

      Asymptomatic

    4. d.

      Intermittent claudication

    5. e.

      All of the above

  3. 3.

    Which risk factor does not increase an individual’s risk for the development of peripheral arterial disease?

    1. a.

      Smoking

    2. b.

      Diabetes mellitus

    3. c.

      Female gender

    4. d.

      Hyperlipidemia

    5. e.

      Chronic renal insufficiency

  4. 4.

    Development of nephrogenic systemic fibrosis is associated with the use of which contrast agent in patients with chronic renal failure?

    1. a.

      Iodinated contrast

    2. b.

      Gadolinium

    3. c.

      Neither

Answer Key

  1. 1.

    c. An ABI of ≤0.9 is most often used as the hemodynamic definition of peripheral arterial disease.

  2. 2.

    e. Patients with peripheral arterial disease can present with intermittent claudication, critical limb ischemia with rest pain or tissue loss, or be asymptomatic.

  3. 3.

    c. Female gender is not a risk factor for the development of peripheral arterial disease. The prevalence of peripheral arterial disease is slightly higher in men.

  4. 4.

    b. Gadolinium has been associated with the risk of developing nephrogenic systemic fibrosis when used in a patient with chronic renal failure.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

AbuRahma, A.F., Campbell, J.E. (2017). Overview of Peripheral Arterial Disease of the Lower Extremity. In: AbuRahma, A. (eds) Noninvasive Vascular Diagnosis. Springer, Cham. https://doi.org/10.1007/978-3-319-54760-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54760-2_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54758-9

  • Online ISBN: 978-3-319-54760-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics