SpecTre: A Tiny Side-Channel Resistant Speck Core for FPGAs

  • Cong ChenEmail author
  • Mehmet Sinan İnci
  • Mostafa Taha
  • Thomas Eisenbarth
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10146)


Emerging applications such as the Internet of Things require security solutions that are small, low power and low cost, yet provide solid protection against a wide range of sophisticated attacks. Lightweight cryptographic schemes such as the Speck cipher that was recently proposed by the NSA aim to solve some of these challenges. However, before using Speck in any practical application, sound protection against side-channel attacks must be in place. In this work, we propose a bit-serialized implementation of Speck, to achieve minimal area footprint. We further propose a Speck core that is provably secure against first-order side-channel attacks using a Threshold Implementation technique which depends on secure multi-party computation. The resulting design is a tiny crypto core that provides AES-like security in under 40 slices on a low-cost Xilinx Spartan 3 FPGA. The first-order side-channel resistant version of the same core needs less than 100 slices. Further, we validate the security of the protected core by state-of-the-art side-channel leakage detection tests.


Block Cipher Stream Cipher Feedback Function Round Function Area Footprint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is supported by the National Science Foundation under grants CNS-1314770 and CNS-1261399.


  1. 1.
    Aysu, A., Gulcan, E., Schaumont, P.: SIMON says: break area records of block ciphers on FPGAs. IEEE Embed. Syst. Lett. 6(2), 37–40 (2014)CrossRefGoogle Scholar
  2. 2.
    Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The Simon and Speck families of lightweight block ciphers. IACR Cryptology ePrint Archive 2013, 404 (2013)Google Scholar
  3. 3.
    Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The Simon and Speck block ciphers on AVR 8-bit microcontrollers. In: Eisenbarth, T., Öztürk, E. (eds.) LightSec 2014. LNCS, vol. 8898, pp. 3–20. Springer, Cham (2015). doi: 10.1007/978-3-319-16363-5_1 Google Scholar
  4. 4.
    Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: Simon and Speck: block ciphers for the internet of things. In: NIST Lightweight Cryptography Workshop, vol. 2015 (2015)Google Scholar
  5. 5.
    Bilgin, B., Daemen, J., Nikov, V., Nikova, S., Rijmen, V., Van Assche, G.: Efficient and first-order DPA resistant implementations of Keccak. In: Francillon, A., Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 187–199. Springer, Cham (2014). doi: 10.1007/978-3-319-08302-5_13 Google Scholar
  6. 6.
    Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: A more efficient AES threshold implementation. In: Pointcheval, D., Vergnaud, D. (eds.) AFRICACRYPT 2014. LNCS, vol. 8469, pp. 267–284. Springer, Cham (2014). doi: 10.1007/978-3-319-06734-6_17 CrossRefGoogle Scholar
  7. 7.
    Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: Higher-order threshold implementations. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 326–343. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-45608-8_18 Google Scholar
  8. 8.
    Chu, J., Benaissa, M.: Low area memory-free FPGA implementation of the AES algorithm. In: 2012 22nd International Conference on Field Programmable Logic and Applications (FPL), pp. 623–626. IEEE (2012)Google Scholar
  9. 9.
    Daemen, J., Rijmen, V.: AES proposal: Rijndael (1999)Google Scholar
  10. 10.
    De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — a family of small and efficient hardware-oriented block ciphers. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-04138-9_20 CrossRefGoogle Scholar
  11. 11.
    Eisenbarth, T., Kumar, S., Paar, C., Poschmann, A., Uhsadel, L.: A survey of lightweight-cryptography implementations. IEEE Des. Test Comput. 6, 522–533 (2007)CrossRefGoogle Scholar
  12. 12.
    Gilbert Goodwill, B.J., Jaffe, J., Rohatgi, P., et al.: A testing methodology for side-channel resistance validation. In: NIST Non-Invasive Attack Testing Workshop (2011)Google Scholar
  13. 13.
    Hwang, D., Chaney, M., Karanam, S., Ton, N., Gaj, K.: Comparison of FPGA-targeted hardware implementations of eSTREAM stream cipher candidates. In: The State of the Art of Stream Ciphers, pp. 151–162 (2008)Google Scholar
  14. 14.
    Kaps, J.-P.: Chai-Tea, cryptographic hardware implementations of xTEA. In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp. 363–375. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-89754-5_28 CrossRefGoogle Scholar
  15. 15.
    Kocher, P., Jaffe, J., Jun, B., Rohatgi, P.: Introduction to differential power analysis. J. Cryptographic Eng. 1(1), 5–27 (2011)CrossRefGoogle Scholar
  16. 16.
    Leiserson, A.J., Marson, M.E., Wachs, M.A.: Gate-level masking under a path-based leakage metric. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS, vol. 8731, pp. 580–597. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-44709-3_32 Google Scholar
  17. 17.
    Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets of Smartcards. Springer, New York (2007)zbMATHGoogle Scholar
  18. 18.
    Moradi, A., Mischke, O.: How far should theory be from practice? – Evaluation of a countermeasure. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 92–106. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-33027-8_6 CrossRefGoogle Scholar
  19. 19.
    Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the limits: a very compact and a threshold implementation of AES. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 69–88. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-20465-4_6 CrossRefGoogle Scholar
  20. 20.
    Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against side-channel attacks and glitches. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS, vol. 4307, pp. 529–545. Springer, Heidelberg (2006). doi: 10.1007/11935308_38 CrossRefGoogle Scholar
  21. 21.
    Reparaz, O., Bilgin, B., Nikova, S., Gierlichs, B., Verbauwhede, I.: Consolidating masking schemes. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 764–783. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-47989-6_37 CrossRefGoogle Scholar
  22. 22.
    Rolfes, C., Poschmann, A., Leander, G., Paar, C.: Ultra-lightweight implementations for smart devices – security for 1000 gate equivalents. In: Grimaud, G., Standaert, F.-X. (eds.) CARDIS 2008. LNCS, vol. 5189, pp. 89–103. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-85893-5_7 CrossRefGoogle Scholar
  23. 23.
    Schneider, T., Moradi, A., Güneysu, T.: Arithmetic addition over boolean masking – towards first- and second-order resistance in hardware. In: Malkin, T., Kolesnikov, V., Lewko, A.B., Polychronakis, M. (eds.) ACNS 2015. LNCS, vol. 9092, pp. 559–578. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-28166-7_27 CrossRefGoogle Scholar
  24. 24.
    Shahverdi, A., Taha, M., Eisenbarth, T.: Silent Simon: a threshold implementation under 100 slices. In: 2015 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), pp. 1–6. IEEE (2015)Google Scholar
  25. 25.
    Tupsamudre, H., Bisht, S., Mukhopadhyay, D.: Differential fault analysis on the families of SIMON and SPECK ciphers. In: 2014 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), pp. 40–48, September 2014Google Scholar
  26. 26.
    Yalla, P., Kaps, J.-P.: Lightweight cryptography for FPGAs. In: International Conference on Reconfigurable Computing and FPGAs, ReConFig 2009, pp. 225–230. IEEE (2009)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Cong Chen
    • 1
    Email author
  • Mehmet Sinan İnci
    • 1
  • Mostafa Taha
    • 2
  • Thomas Eisenbarth
    • 1
  1. 1.Worcester Polytechnic InstituteWorcesterUSA
  2. 2.University of Western OntarioLondonCanada

Personalised recommendations