Side-Channel Analysis of the TUAK Algorithm Used for Authentication and Key Agreement in 3G/4G Networks

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10146)

Abstract

Side-channel attacks are nowadays well known and most designers of security embedded systems are aware of them. Yet, these attacks are still major concerns and several implementations of cryptographic algorithms are still being broken. In fact, a recent work has exhibited a successful Differential Power Attack (DPA) on the Milenage algorithm used for authentication and key agreement in UMTS/LTE networks. Surprisingly, the targeted Milenage implementations in different USIM cards, coming from several mobile network operators, didn’t systematically take advantage of the large panel of the well-known side-channel countermeasures. Recently, a new algorithm called Tuak, based on the Keccak permutation function, has been proposed as alternative to Milenage. Although Keccak was deeply analyzed in several works, the Tuak algorithm needs to be well investigated to assess its security level and to avoid inappropriate apply of Keccak. In this paper, we present a side-channel analysis of an unprotected Tuak implementation and we demonstrate that a successful side-channel attack is possible if the state-of-the-art countermeasures are not considered. Our results show that a few hundred of traces would roughly be needed to recover the subscriber key and other authentication secrets fixed by mobile operators. Actually, this work raises a warning flag to embedded systems developers alerting them to rely on adequate countermeasures, which effect shall be confirmed with thorough security analysis, when implementing cryptographic primitives in USIM cards.

Keywords

Tuak Keccak Side-channel analysis Authentication and key agreement UMTS LTE USIM cards 

References

  1. 1.
    ETSI TS 133 105; universal mobile telelecommunications system (UMTS); LTE; 3G security; cryptographic algorithm requirements (2016). 3GPP TS 33.105 version 13.0.0 release 13, 01/2016Google Scholar
  2. 2.
    ETSI, TS 133 202; universal mobile telelecommunications system (UMTS); LTE; 3G security; specification of the 3GPP. Confidentiality, integrety algorithms; document 2: Kasumi specification (2016). 3GPP TS 35.202 version 13.0.0 release 13, 01/2016Google Scholar
  3. 3.
    ETSI, TS 135 201; universal mobile telelecommunications system (UMTS); LTE; 3G security; specification of the 3GPP. Confidentiality, integrety algorithms; document 1: \(f_8\) and \(f_9\) specification (2016). 3GPP TS 35.201 version 13.0.0 release 13, 01/2016Google Scholar
  4. 4.
    3GPP specification: 135.206 (2016). Specification of the Milenage algorithm set, V13.0.0, 01/2016Google Scholar
  5. 5.
    3GPP specification: 135.231 (2016). Specification of the Tuak algorithm set, V13.0.0, 01/2016Google Scholar
  6. 6.
    Akkar, M.-L., Giraud, C.: An implementation of DES and AES, secure against some attacks. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 309–318. Springer, Heidelberg (2001). doi:10.1007/3-540-44709-1_26 CrossRefGoogle Scholar
  7. 7.
    Alt, S., Fouque, P.-A., Macario-rat, G., Onete, C., Richard, B.: A cryptographic analysis of UMTS/LTE AKA. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696, pp. 18–35. Springer, Heidelberg (2016). doi:10.1007/978-3-319-39555-5_2 Google Scholar
  8. 8.
    Barkan, E., Biham, E., Keller, N.: Instant ciphertext-only cryptanalysis of GSM encrypted communication. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 600–616. Springer, Heidelberg (2003). doi:10.1007/978-3-540-45146-4_35 CrossRefGoogle Scholar
  9. 9.
    Bertoni, G., Daemen, J., Debande, N., Le, T., Peeters, M., Assche, G.V.: Power analysis of hardware implementations protected with secret sharing. In: 45th Annual IEEE/ACM, MICRO 2012, Workshops Proceedings, Vancouver, BC, Canada, 1–5 December 2012, pp. 9–16 (2012)Google Scholar
  10. 10.
    Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Note on side-channel attacks and their countermeasures. In: Comment on the NIST Hash Competition Forum, May 2009Google Scholar
  11. 11.
    Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: The Keccak reference, January 2011Google Scholar
  12. 12.
    Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Keccak implementation overview, Version 3.2, 29 May 2012Google Scholar
  13. 13.
    Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004). doi:10.1007/978-3-540-28632-5_2 CrossRefGoogle Scholar
  14. 14.
    Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counteract power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 398–412. Springer, Heidelberg (1999). doi:10.1007/3-540-48405-1_26. ISBN: 3-540-66347-9Google Scholar
  15. 15.
    Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg (2003). doi:10.1007/3-540-36400-5_3 CrossRefGoogle Scholar
  16. 16.
    Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption Standard. Springer, Heidelberg (2002)CrossRefMATHGoogle Scholar
  17. 17.
    Doget, J., Prouff, E., Rivain, M., Standaert, F.-X.: Univariate side channel attacks and leakage modeling. J. Cryptogr. Eng. 1(2), 123–144 (2011)CrossRefGoogle Scholar
  18. 18.
    Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual information analysis. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85053-3_27 CrossRefGoogle Scholar
  19. 19.
    Goubin, L., Patarin, J.: DES and differential power analysis the “Duplication” method. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172. Springer, Heidelberg (1999). doi:10.1007/3-540-48059-5_15 CrossRefGoogle Scholar
  20. 20.
    Homma, N., Nagashima, S., Sugawara, T., Aoki, T., Satoh, A.: A high-resolution phase-based waveform matching and its application to side-channel attacks. IEICE Trans. 91-A(1): 193–202. New Orleans. Louisiana, USA (2008). doi:10.1109/ISCAS.2007.378024
  21. 21.
    Kocher, P.C.: Timing attacks on implementations of diffie-hellman, RSA, DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996). doi:10.1007/3-540-68697-5_9 Google Scholar
  22. 22.
    Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). doi:10.1007/3-540-48405-1_25 Google Scholar
  23. 23.
    Liu, J., Yu, Y., Standaert, F.-X., Guo, Z., Gu, D., Sun, W., Ge, Y., Xie, X.: Cloning 3G/4G sim cards with a pc and an oscilloscope: lessons learned in physical security. In: BlackHat (2015)Google Scholar
  24. 24.
    Liu, J., Yu, Y., Standaert, F.-X., Guo, Z., Gu, D., Sun, W., Ge, Y., Xie, X.: Small tweaks do not help: differential power analysis of MILENAGE implementations in 3G/4G USIM cards. In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS 2015. LNCS, vol. 9326, pp. 468–480. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24174-6_24 CrossRefGoogle Scholar
  25. 25.
    Luo, P., Fei, Y., Fang, X., Ding, A.A., Kaeli, D.R., Leeser, M.: Side-channel analysis of MAC-Keccak hardware implementations. In: Proceedings of the Fourth HASP, pp. 1:1–1:8. ACM, New York, NY, USA (2015)Google Scholar
  26. 26.
    Mayes, K., Babbage, S., Maximov, A.: Performance evaluation of the new Tuak mobile authentication algorithm. In: The Eleventh International Conference on Systems ICONS 2016, pp. 38–44 (2016). Related to work done in support of the ETSI SAGE group for mobile authentication standardsGoogle Scholar
  27. 27.
    Messerges, T.S.: Securing the AES finalists against power analysis attacks. In: FSE 2000, pp. 150–164. Springer, New York (2000)Google Scholar
  28. 28.
    Rao, J.R., Rohatgi, P., Scherzer, H., Tinguely, S.: Partitioning attacks: or how to rapidly clone some GSM cards. In: Proceedings of the 2002 IEEE Symposium on Security and Privacy, SP 2002, p. 31, Washington, DC, USA (2002)Google Scholar
  29. 29.
    Rivain, M., Prouff, E., Doget, J.: Higher-order masking and shuffling for software implementations of block ciphers. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 171–188. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04138-9_13 CrossRefGoogle Scholar
  30. 30.
    Schindler, W.: Advanced stochastic methods in side channel analysis on block ciphers in the presence of masking. J. Math. Crypt. 2(3), 291–310 (2008)MathSciNetMATHGoogle Scholar
  31. 31.
    Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side channel cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 30–46. Springer, Heidelberg (2005). doi:10.1007/11545262_3 CrossRefGoogle Scholar
  32. 32.
    Taha, M.M.I., Schaumont, P.: Side-channel analysis of MAC-Keccak. In: 2013 IEEE International Symposium on Hardware-Oriented Security and Trust, HOST 2013, Austin, TX, USA, 2–3 June 2013, pp. 125–130 (2013)Google Scholar
  33. 33.
    Veyrat-Charvillon, N., Medwed, M., Kerckhof, S., Standaert, F.-X.: Shuffling against side-channel attacks: a comprehensive study with cautionary note. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 740–757. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34961-4_44 CrossRefGoogle Scholar
  34. 34.
    Wagner, D., Schneier, B., Kelsey, J.: Cryptanalysis of the cellular message encryption algorithm. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 526–537. Springer, Heidelberg (1997). doi:10.1007/BFb0052260 CrossRefGoogle Scholar
  35. 35.
    Zohner, M., Kasper, M., Stottinger, M., Huss, S.: Side channel analysis of the SHA-3 finalists. DATE 2012, 1012–1017 (2012)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Safran Identity and SecurityParisFrance

Personalised recommendations