Advertisement

Towards Ontology-Based Event Processing

  • Riccardo Tommasini
  • Pieter Bonte
  • Emanuele Della Valle
  • Erik Mannens
  • Filip De Turck
  • Femke Ongenae
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10161)

Abstract

The rapid change and heterogeneity of today’s generated data calls for real-time decision making systems that can cope with the presented heterogeneity. In this paper, we present an Ontology Based Event Processing system that bridges the gap between ontology-based reasoning and event processing. We propose both a language and an architecture to perform event processing over abstract ontology concepts. This allows to perform efficient temporal reasoning, while the high-level ontological definitions reduce the need for knowledge of the underlying data structure in complex domains.

Keywords

Stream Processing Semantic Web Stream Reasoning Complex Event Processing 

References

  1. 1.
    Anicic, D., Fodor, P., Rudolph, S., Stojanovic, N.: EP-SPARQL: a unified language for event processing and stream reasoning, pp. 635–644 (2011)Google Scholar
  2. 2.
    Barnaghi, P., Wang, W., Henson, C., Taylor, K.: Semantics for the Internet of Things: early progress and back to the future. Int. J. Semant. Web Inf. Syst. (IJSWIS) 8, 1–21 (2012)CrossRefGoogle Scholar
  3. 3.
    Bohlen, M.H., Busatto, R., Jensen, C.S.: Point-versus interval-based temporaldata models. In: Proceedings of the Fourteenth International Conference on Data Engineering, pp. 192–200 (1998)Google Scholar
  4. 4.
    Bonte, P., Ongenae, F., De Backere, F., Schaballie, J., Arndt, D., Verstichel, S., Mannens, E., Van de Walle, R., De Turck, F.: The MASSIF platform: a modular and semantic platform for the development of flexible IoT services. KAIS, 1–38 (2016)Google Scholar
  5. 5.
    Della Valle, E., Ceri, S., Harmelen, F.V., Fensel, D.: It’s a streaming world! Reasoning upon rapidly changing information. IEEE Intell. Syst. 24(6), 83–89 (2009)CrossRefGoogle Scholar
  6. 6.
    Lutz, C., Wolter, F., Zakharyaschev, M.: Temporal description logics: a survey. In: 15th International Symposium on Temporal Representation and Reasoning, TIME 2008, Université du Québec à Montréal, pp. 3–14, 16–18 June 2008Google Scholar
  7. 7.
    Shearer, R., Motik, B., Horrocks, I.: HermiT: a highly-efficient owl reasoner. In: OWLED, vol. 432, p. 91 (2008)Google Scholar
  8. 8.
    Sirin, E., Bulka, B., Smith, M.: Terp: Syntax for owl-friendly SPARQL queries. In: Proceedings of the 7th International Workshop on OWL: Experiences and Directions (OWLED 2010), San Francisco, 21–22 June 2010Google Scholar
  9. 9.
    Taylor, K., Leidinger, L.: Ontology-driven complex event processing in heterogeneous sensor networks. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., Leenheer, P., Pan, J. (eds.) ESWC 2011. LNCS, vol. 6644, pp. 285–299. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-21064-8_20 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Riccardo Tommasini
    • 1
    • 2
  • Pieter Bonte
    • 1
    • 2
  • Emanuele Della Valle
    • 1
    • 2
  • Erik Mannens
    • 1
    • 2
  • Filip De Turck
    • 1
  • Femke Ongenae
    • 1
    • 2
  1. 1.imecGhent UniversityGhentBelgium
  2. 2.DEIBPolitecnico di MilanoMilanItaly

Personalised recommendations