Advertisement

Using Ontology Design Patterns to Represent Sustainability Indicator Sets

  • Lida Ghahremanlou
  • Liam Magee
  • James A. Thom
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10161)

Abstract

Sustainability indicators are increasingly being used to measure the economic, environmental and social properties of complex systems across different temporal and spatial scales. This motivates their inclusion in open distributed knowledge systems such as the Semantic Web. The diversity of such indicator sets provides considerable choice but also poses problems for those who need to measure and report. To address the modelling problems of indicator sets, we propose the use of Value Partition pattern to construct two design candidates: generic and specific. The generic design is more abstract, with fewer classes and properties, than the specific design. Documents describing two indicator systems – the Global Reporting Initiative and the Organisation for Economic Co-operation and Development – are used in the design of both candidate ontologies. We show the use of existing structural ontology design patterns can help to solve problems of ontology representations for modelling sustainability indicator sets.

Keywords

Sustainability Indicator Sets Sustainability Reporting Ontology Design Patterns Value Partition 

Notes

Acknowledgements

We thank the anonymous reviewers for their valuable comments. This research has been supported in part by an Australian Research Council (ARC) funded linkage project LP0990509 on Accounting for Sustainability: Developing an Integrated Approach for Sustainability Assessments.

References

  1. 1.
    Aranguren, M.E.: Ontology design patterns for the formalisation of biological ontologies. Master’s thesis, University of Manchester (2005)Google Scholar
  2. 2.
    Aranguren, M.E.: Role and Application of Ontology Design Patterns in Bio-Ontologies. PhD thesis, University of Manchester (2009). http://mikeleganaaranguren.files.wordpress.com/2010/01/thesis.pdf
  3. 3.
    Booch, G.: Object-Oriented Analysis and Design with Applications. Benjamin-Cummings, Redwood City (1994)zbMATHGoogle Scholar
  4. 4.
    Brilhante, V., Ferreira, A., Marinho, J., Pereira, J.S.: Information integration through ontology and metadata for sustainability analysis. In: The International Environmental Modelling and Software Society (iEMSs) 3rd Biennial Meeting (2006)Google Scholar
  5. 5.
    Dudáš, M., Hanzal, T., Svátek, V., Zamazal, O.: OBOWLMorph: Starting ontology development from PURO background models. In: Tamma, V., Dragoni, M., Gonçalves, R., Ławrynowicz, A. (eds.) OWLED 2015. LNCS, vol. 9557, pp. 14–20. Springer, Cham (2016). doi: 10.1007/978-3-319-33245-1_2 CrossRefGoogle Scholar
  6. 6.
    Fernandez, M., Gomez-Perez, A., Juristo, N.: METHONTOLOGY: From ontological art towards ontological engineering. In: Proceedings of the AAAI97 Spring Symposium Series on Ontological Engineering, pp. 33–40. AAAI Press (1997)Google Scholar
  7. 7.
    Fox, M.S.: A foundation ontology for global city indicators. Department of Mechanical and Industrial Engineering University of Toronto, Global Cities Institute Working Paper No. 3 (2014)Google Scholar
  8. 8.
    Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable Object-oriented Software. Pearson Education, Upper Saddle River (1994)zbMATHGoogle Scholar
  9. 9.
    Gangemi, A.: Ontology design patterns for semantic web content. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 262–276. Springer, Heidelberg (2005). doi: 10.1007/11574620_21 CrossRefGoogle Scholar
  10. 10.
    Gangemi, A., Presutti, V.: Ontology design patterns. In: Staab, S., Studer, R. (eds.) Handbook on Ontologies. International Handbooks on Information Systems, pp. 221–243. Springer, Heidelberg (2009). doi: 10.1007/978-3-540-92673-3_10 CrossRefGoogle Scholar
  11. 11.
    Gangemi, A., Gómez-Pérez, A., Presutti, V., Suárez-Figueroa, M.C.: Towards a catalog of OWL-based ontology design patterns. In: CAEPIA. Neon Project Publications (2007)Google Scholar
  12. 12.
    Ghahremanloo, L.: An integrated knowledge base for sustainability indicators. In: Australasian Computing Doctoral Consortium. RMIT Melbourne (2012). http://www.cs.rmit.edu.au/acdc2012/
  13. 13.
    Ghahremanloo, L., Thom, J.A., Magee, L.: An ontology derived from heterogeneous sustainability indicator set documents. In: Proceedings of the Seventeenth Australasian Document Computing Symposium, pp. 72–79. ACM (2012)Google Scholar
  14. 14.
    Guarino, N., Welty, C.: Evaluating ontological decisions with OntoClean. Commun. ACM 45(2), 61–65 (2002). doi: 10.1145/503124.503150 CrossRefGoogle Scholar
  15. 15.
    Han, D., Stoffel, K.: Ontology based qualitative case studies for sustainability research. In: Proceedings of the AI for an Intelligent Planet. ACM (2011). Article 6Google Scholar
  16. 16.
    Kumazawa, T., Saito, O., Kozaki, K., Matsui, T., Mizoguchi, R.: Toward knowledge structuring of sustainability science based on ontology engineering. Sustain. Sci. 4(1), 99–116 (2009). doi: 10.1007/s11625-008-0063-z CrossRefGoogle Scholar
  17. 17.
    Lozano-Tello, A., Gómez-Pérez, A.: ONTOMETRIC: a method to choose the appropriate ontology. J. Database Manage. 15(2), 1–18 (2004). http://oa.upm.es/6467/
  18. 18.
    Madlberger, L., Thöni, A., Wetz, P., Schatten, A., Tjoa, A.M.: Ontology-based data integration for corporate sustainability information systems. In: Proceedings of International Conference on Information Integration and Web-Based Applications & Services, pp. 353–357. ACM (2013)Google Scholar
  19. 19.
    Pinheiro, W.A., Barros, R., De Souza, J.M., Xexeo, G.B., Strauch, J., Barros, P., Campos, M.: Adaptative methodology of sustainability indicators management by ontology. Int. J. Glob. Environ. Issues 9(4), 338–355 (2009). http://EconPapers.repec.org/RePEc:ids:ijgenv:v:9:y:2009:i:4:p:338-355
  20. 20.
    Rector, A. (ed.) Representing specified values in OWL: “value partitions” and “value sets”. W3C working group note, 17 May 2005Google Scholar
  21. 21.
    Reich, J.R.: Ontological design patterns: metadata of molecular biological ontologies, information and knowledge. In: Ibrahim, M., Küng, J., Revell, N. (eds.) DEXA 2000. LNCS, vol. 1873, pp. 698–709. Springer, Heidelberg (2000). doi: 10.1007/3-540-44469-6_65 CrossRefGoogle Scholar
  22. 22.
    Rodriguez-Castro, B., Ge, M., Hepp, M.: Alignment of ontology design patterns: class as property value, value partition and normalisation. In: Meersman, R., et al. (eds.) OTM 2012. LNCS, vol. 7566, pp. 682–699. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-33615-7_16 CrossRefGoogle Scholar
  23. 23.
    Staab, S., Erdmann, M., Maedche, A.: Engineering ontologies using semantic patterns. In: Proceedings of the IJCAI 2001 Workshop on E-Business & the Intelligent Web, pp. 174–185 (2001)Google Scholar
  24. 24.
    Svátek, V., Homola, M., Kluka, J., Vacura, M.: Mapping structural design patterns in owl to ontological background models. In: Proceedings of the Seventh International Conference on Knowledge Capture, pp. 117–120. ACM (2013)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Coventry UniversityCoventryUK
  2. 2.University of Western SydneySydneyAustralia
  3. 3.RMIT UniversityMelbourneAustralia

Personalised recommendations