Rotavirus Biology

  • Susana López
  • Carlos F. Arias


Rotaviruses are the leading etiological agents of acute gastroenteritis in infants and young children worldwide. These non-enveloped viruses enter cells using different types of endocytosis and, depending on the virus strain, travel to different endosomal compartments before exiting to the cytosolic space. Once into the cytoplasm, as obligate parasites, rotaviruses depend on the synthetic machinery of the cell to translate their proteins and on the cell energy and building blocks to replicate their genomes. Cells respond to rotavirus invasions by eliciting diverse responses to eliminate the incoming virus. In turn, to establish a successful infection, rotaviruses have evolved different strategies to take over the cellular metabolic machinery and to overcome the defense mechanisms of the cell. In this chapter, some of the viral and cellular factors involved in the different stages of a productive rotavirus cell entry are revised, as well as some of the strategies used by rotaviruses to hijack the protein synthesis apparatus of the cell, to ensure the translation of their mRNA, and to handle cellular stress and antiviral responses. In addition, mention is made of research on virus–cell interactions and immunity carried out in the region.


Rotavirus Gastroenteritis Virus entry Endocytosis ESCRT complex Cathepsins Innate immune response OAS/RNAse L Phosphodiesterase Stress granules 



The work in our laboratory relevant to this chapter was supported by grant # 221019 from CONACYT, Mexico. and grants # IG200114, and #IG200317 from DGAPA-UNAM, Mexico. The authors thank Dr. Liliana Sanchez Tacuba for the elaboration of the figures.

Competing Interests

We declare no competing interest.


  1. 1.
    (2014) World Health Statistics 2014, part III. In: (ed)
  2. 2.
    Almanza L, Arias CF, Lopez S (1994) Amino acid sequence of the porcine rotavirus YM VP1 protein. Res Virol 145:313–317PubMedCrossRefGoogle Scholar
  3. 3.
    Anderson P, Kedersha N (2002) Stressful initiations. J Cell Sci 115:3227–3234PubMedGoogle Scholar
  4. 4.
    Angel J, Steele AD, Franco MA (2014) Correlates of protection for rotavirus vaccines: possible alternative trial endpoints, opportunities, and challenges. Hum Vaccin Immunother 10:3659–3671PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Arias CF, Lopez S, Espejo RT (1982) Gene protein products of SA11 simian rotavirus genome. J Virol 41:42–50PubMedPubMedCentralGoogle Scholar
  6. 6.
    Arias CF, López S, Espejo RT (1982) Identification of the RNA segments encoding some structural polypeptides of Nebraska calf diarrhea virus. Rev Lat Microbiol 24:47–54Google Scholar
  7. 7.
    Arias CF, Lopez S, Bell JR, Strauss JH (1984) Primary structure of the neutralization antigen of simian rotavirus SA11 as deduced from cDNA sequence. J Virol 50:657–661PubMedPubMedCentralGoogle Scholar
  8. 8.
    Arias CF, Ballado T, Plebanski M (1986) Synthesis of the outer-capsid glycoprotein of the simian rotavirus SA11 in Escherichia coli. Gene (Amst) 47:211–219Google Scholar
  9. 9.
    Arias CF, Lizano M, Lopez S (1987) Synthesis in Escherichia coli and immunological characterization of a polypeptide containing the cleavage sites associated with trypsin enhancement of rotavirus SA11 infectivity. J Gen Virol 68(pt 3):633–642PubMedCrossRefGoogle Scholar
  10. 10.
    Arias CF, Ruiz AM, Lopez S (1989) Further antigenic characterization of porcine rotavirus YM. J Clin Microbiol 27:2871–2873PubMedPubMedCentralGoogle Scholar
  11. 11.
    Arias CF, Romero P, Alvarez V, Lopez S (1996) Trypsin activation pathway of rotavirus infectivity. J Virol 70:5832–5839PubMedPubMedCentralGoogle Scholar
  12. 12.
    Arias CF, Dector MA, Segovia L, Lopez T, Camacho M, Isa P, Espinosa R, Lopez S (2004) RNA silencing of rotavirus gene expression. Virus Res 102:43–51PubMedCrossRefGoogle Scholar
  13. 13.
    Arias CF, Silva-Ayala D, Lopez S (2015) Rotavirus entry: a deep journey into the cell with several exits. J Virol 89:890–893PubMedCrossRefGoogle Scholar
  14. 14.
    Arias CF, Silva-Ayala D, Isa P, Díaz-Salinas MA, López S (2016) Rotavirus attachment, internalization, and vesicular traffic. In: Svensson L, Desselberger U, Greenberg HB, Estes MK (eds) Viral gastroenteritis: molecular epidemiology and pathogenesis. Elsevier, London, pp 103–119CrossRefGoogle Scholar
  15. 15.
    Arnold MM, Brownback CS, Taraporewala ZF, Patton JT (2012) Rotavirus variant replicates efficiently although encoding an aberrant NSP3 that fails to induce nuclear localization of poly(A)-binding protein. J Gen Virol 93:1483–1494PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Ayala-Breton C, Arias M, Espinosa R, Romero P, Arias CF, Lopez S (2009) Analysis of the kinetics of transcription and replication of the rotavirus genome by RNA interference. J Virol 83:8819–8831PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Babji S, Kang G (2012) Rotavirus vaccination in developing countries. Curr Opin Virol 2:443–448PubMedCrossRefGoogle Scholar
  18. 18.
    Braulke T, Bonifacino JS (2009) Sorting of lysosomal proteins. Biochim Biophys Acta 1793:605–614PubMedCrossRefGoogle Scholar
  19. 19.
    Broquet AH, Hirata Y, McAllister CS, Kagnoff MF (2011) RIG-I/MDA5/MAVS are required to signal a protective IFN response in rotavirus-infected intestinal epithelium. J Immunol 186:1618–1626PubMedCrossRefGoogle Scholar
  20. 20.
    Calderon MN, Guerrero CA, Acosta O, Lopez S, Arias CF (2012) Inhibiting rotavirus infection by membrane-impermeant thiol/disulfide exchange blockers and antibodies against protein disulfide isomerase. Intervirology 55:451–464PubMedCrossRefGoogle Scholar
  21. 21.
    Carreno-Torres JJ, Gutierrez M, Arias CF, Lopez S, Isa P (2010) Characterization of viroplasm formation during the early stages of rotavirus infection. Virol J 7:350PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Cevallos Porta D, Lopez S, Arias CF, Isa P (2016) Polarized rotavirus entry and release from differentiated small intestinal cells. Virology 499:65–71PubMedCrossRefGoogle Scholar
  23. 23.
    Ciarlet M, Crawford SE, Cheng E, Blutt SE, Rice DA, Bergelson JM, Estes MK (2002) VLA-2 (alpha2beta1) integrin promotes rotavirus entry into cells but is not necessary for rotavirus attachment. J Virol 76:1109–1123PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Ciarlet M, Ludert JE, Iturriza-Gomara M, Liprandi F, Gray JJ, Desselberger U, Estes MK (2002) Initial interaction of rotavirus strains with N-acetylneuraminic (sialic) acid residues on the cell surface correlates with VP4 genotype, not species of origin. J Virol 76:4087–4095PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Clark SM, Roth JR, Clark ML, Barnett BB, Spendlove RS (1981) Trypsin enhancement of rotavirus infectivity: mechanism of enhancement. J Virol 39:816–822PubMedPubMedCentralGoogle Scholar
  26. 26.
    Contin R, Arnoldi F, Mano M, Burrone OR (2011) Rotavirus replication requires a functional proteasome for effective assembly of viroplasms. J Virol 85:2781–2792PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Crawford SE, Labbe M, Cohen J, Burroughs MH, Zhou YJ, Estes MK (1994) Characterization of virus-like particles produced by the expression of rotavirus capsid proteins in insect cells. J Virol 68:5945–5952PubMedPubMedCentralGoogle Scholar
  28. 28.
    Cuadras MA, Arias CF, Lopez S (1997) Rotaviruses induce an early membrane permeabilization of MA104 cells and do not require a low intracellular Ca2+ concentration to initiate their replication cycle. J Virol 71:9065–9074PubMedPubMedCentralGoogle Scholar
  29. 29.
    Cuadras MA, Mendez E, Arias CF, Lopez S (1998) A new cysteine in rotavirus VP4 participates in the formation of an alternate disulfide bond. J Gen Virol 79(pt 11):2673–2677PubMedCrossRefGoogle Scholar
  30. 30.
    Dector MA, Romero P, Lopez S, Arias CF (2002) Rotavirus gene silencing by small interfering RNAs. EMBO Rep 3:1175–1180PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Delorme C, Brussow H, Sidoti J, Roche N, Karlsson KA, Neeser JR, Teneberg S (2001) Glycosphingolipid binding specificities of rotavirus: identification of a sialic acid-binding epitope. J Virol 75:2276–2287PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Diaz-Salinas MA, Romero P, Espinosa R, Hoshino Y, Lopez S, Arias CF (2013) The spike protein VP4 defines the endocytic pathway used by rotavirus to enter MA104 cells. J Virol 87:1658–1663PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Diaz-Salinas MA, Silva-Ayala D, Lopez S, Arias CF (2014) Rotaviruses reach late endosomes and require the cation-dependent mannose-6-phosphate receptor and the activity of cathepsin proteases to enter the cell. J Virol 88:4389–4402PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature (Lond) 411:494–498CrossRefGoogle Scholar
  35. 35.
    Espejo RT, Lopez S, Arias C (1981) Structural polypeptides of simian rotavirus SA11 and the effect of trypsin. J Virol 37:156–160PubMedPubMedCentralGoogle Scholar
  36. 36.
    Estes MK, Graham DY, Mason BB (1981) Proteolytic enhancement of rotavirus infectivity: molecular mechanisms. J Virol 39:879–888PubMedPubMedCentralGoogle Scholar
  37. 37.
    Estes MK, Greenberg HB (2013) Rotaviruses. In: Knipe DM, Howley PM (eds) Fields virology. Lippincott Williams & Wilkins, Philadelphia, pp 1347–1401Google Scholar
  38. 38.
    Fuentes-Panana EM, Lopez S, Gorziglia M, Arias CF (1995) Mapping the hemagglutination domain of rotaviruses. J Virol 69:2629–2632PubMedPubMedCentralGoogle Scholar
  39. 39.
    Glass RI, Parashar U, Patel M, Gentsch J, Jiang B (2014) Rotavirus vaccines: successes and challenges. J Infect 68(suppl 1):S9–18PubMedCrossRefGoogle Scholar
  40. 40.
    Gonzalez RA, Torres-Vega MA, Lopez S, Arias CF (1998) In vivo interactions among rotavirus nonstructural proteins. Arch Virol 143:981–996PubMedCrossRefGoogle Scholar
  41. 41.
    Gonzalez RA, Espinosa R, Romero P, Lopez S, Arias CF (2000) Relative localization of viroplasmic and endoplasmic reticulum-resident rotavirus proteins in infected cells. Arch Virol 145:1963–1973PubMedCrossRefGoogle Scholar
  42. 42.
    Graham KL, Halasz P, Tan Y, Hewish MJ, Takada Y, Mackow ER, Robinson MK, Coulson BS (2003) Integrin-using rotaviruses bind alpha2beta1 integrin alpha2 I domain via VP4 DGE sequence and recognize alphaXbeta2 and alphaVbeta3 by using VP7 during cell entry. J Virol 77:9969–9978PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Gratia M, Sarot E, Vende P, Charpilienne A, Baron CH, Duarte M, Pyronnet S, Poncet D (2015) Rotavirus NSP3 is a translational surrogate of the poly(A) binding protein-poly(A) complex. J Virol 89:8773–8782PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Guerrero CA, Zarate S, Corkidi G, Lopez S, Arias CF (2000) Biochemical characterization of rotavirus receptors in MA104 cells. J Virol 74:9362–9371PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Guerrero CA, Bouyssounade D, Zarate S, Isa P, Lopez T, Espinosa R, Romero P, Mendez E, Lopez S, Arias CF (2002) Heat shock cognate protein 70 is involved in rotavirus cell entry. J Virol 76:4096–4102PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Gutierrez M, Isa P, Sanchez-San Martin C, Perez-Vargas J, Espinosa R, Arias CF, Lopez S (2010) Different rotavirus strains enter MA104 cells through different endocytic pathways: the role of clathrin-mediated endocytosis. J Virol 84:9161–9169PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Harb M, Becker MM, Vitour D, Baron CH, Vende P, Brown SC, Bolte S, Arold ST, Poncet D (2008) Nuclear localization of cytoplasmic poly(A)-binding protein upon rotavirus infection involves the interaction of NSP3 with eIF4G and RoXaN. J Virol 82:11283–11293PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Harding HP, Calfon M, Urano F, Novoa I, Ron D (2002) Transcriptional and translational control in the Mammalian unfolded protein response. Annu Rev Cell Dev Biol 18:575–599PubMedCrossRefGoogle Scholar
  49. 49.
    Haselhorst T, Blanchard H, Frank M, Kraschnefski MJ, Kiefel MJ, Szyczew AJ, Dyason JC, Fleming F, Holloway G, Coulson BS, von Itzstein M (2007) STD NMR spectroscopy and molecular modeling investigation of the binding of N-acetylneuraminic acid derivatives to rhesus rotavirus VP8* core. Glycobiology 17:68–81PubMedCrossRefGoogle Scholar
  50. 50.
    Hinnebusch AG (2014) The scanning mechanism of eukaryotic translation initiation. Annu Rev Biochem 83:779–812PubMedCrossRefGoogle Scholar
  51. 51.
    Hu L, Crawford SE, Czako R, Cortes-Penfield NW, Smith DF, Le Pendu J, Estes MK, Prasad BV (2012) Cell attachment protein VP8* of a human rotavirus specifically interacts with A-type histo-blood group antigen. Nature (Lond) 485:256–259CrossRefGoogle Scholar
  52. 52.
    Huang P, Xia M, Tan M, Zhong W, Wei C, Wang L, Morrow A, Jiang X (2012) Spike protein VP8* of human rotavirus recognizes histo-blood group antigens in a type-specific manner. J Virol 86:4833–4843PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Isa P, Lopez S, Segovia L, Arias CF (1997) Functional and structural analysis of the sialic acid-binding domain of rotaviruses. J Virol 71:6749–6756PubMedPubMedCentralGoogle Scholar
  54. 54.
    Isa P, Realpe M, Romero P, Lopez S, Arias CF (2004) Rotavirus RRV associates with lipid membrane microdomains during cell entry. Virology 322:370–381PubMedCrossRefGoogle Scholar
  55. 55.
    Isa P, Arias CF, Lopez S (2006) Role of sialic acids in rotavirus infection. Glycoconj J 23:27–37PubMedCrossRefGoogle Scholar
  56. 56.
    Jackson RJ, Hellen CU, Pestova TV (2010) The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol 11:113–127PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Kaufman RJ (1999) Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev 13:1211–1233PubMedCrossRefGoogle Scholar
  58. 58.
    Kaufman RJ (2004) Regulation of mRNA translation by protein folding in the endoplasmic reticulum. Trends Biochem Sci 29:152–158PubMedCrossRefGoogle Scholar
  59. 59.
    Kedersha N, Anderson P (2002) Stress granules: sites of mRNA triage that regulate mRNA stability and translatability. Biochem Soc Trans 30:963–969PubMedCrossRefGoogle Scholar
  60. 60.
    Kotloff KL, Nataro JP, Blackwelder WC, Nasrin D, Farag TH, Panchalingam S, Wu Y, Sow SO, Sur D, Breiman RF, Faruque AS, Zaidi AK, Saha D, Alonso PL, Tamboura B, Sanogo D, Onwuchekwa U, Manna B, Ramamurthy T, Kanungo S, Ochieng JB, Omore R, Oundo JO, Hossain A, Das SK, Ahmed S, Qureshi S, Quadri F, Adegbola RA, Antonio M, Hossain MJ, Akinsola A, Mandomando I, Nhampossa T, Acacio S, Biswas K, O’Reilly CE, Mintz ED, Berkeley LY, Muhsen K, Sommerfelt H, Robins-Browne RM, Levine MM (2013) Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): a prospective, case-control study. Lancet 382:209–222PubMedCrossRefGoogle Scholar
  61. 61.
    Lappalainen S, Pastor AR, Malm M, Lopez-Guerrero V, Esquivel-Guadarrama F, Palomares LA, Vesikari T, Blazevic V (2015) Protection against live rotavirus challenge in mice induced by parenteral and mucosal delivery of VP6 subunit rotavirus vaccine. Arch Virol 160:2075–2078PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Li W, Manktelow E, von Kirchbach JC, Gog JR, Desselberger U, Lever AM (2010) Genomic analysis of codon, sequence and structural conservation with selective biochemical-structure mapping reveals highly conserved and dynamic structures in rotavirus RNAs with potential cis-acting functions. Nucleic Acids Res 38:7718–7735PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Lizano M, Lopez S, Arias CF (1991) The amino-terminal half of rotavirus SA114fM VP4 protein contains a hemagglutination domain and primes for neutralizing antibodies to the virus. J Virol 65:1383–1391PubMedPubMedCentralGoogle Scholar
  64. 64.
    Lopez S, Arias CF, Bell JR, Strauss JH, Espejo RT (1985) Primary structure of the cleavage site associated with trypsin enhancement of rotavirus SA11 infectivity. Virology 144:11–19PubMedCrossRefGoogle Scholar
  65. 65.
    Lopez S, Arias CF, Mendez E, Espejo RT (1986) Conservation in rotaviruses of the protein region containing the two sites associated with trypsin enhancement of infectivity. Virology 154:224–227PubMedCrossRefGoogle Scholar
  66. 66.
    Lopez S, Arias CF (1987) The nucleotide sequence of the 5′ and 3′ ends of rotavirus SA11 gene 4. Nucleic Acids Res 15:4691PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Lopez S, Lopez I, Romero P, Mendez E, Soberon X, Arias CF (1991) Rotavirus YM gene 4: analysis of its deduced amino acid sequence and prediction of the secondary structure of the VP4 protein. J Virol 65:3738–3745PubMedPubMedCentralGoogle Scholar
  68. 68.
    Lopez S, Arias CF (1993) Sequence analysis of rotavirus YM VP6 and NS28 proteins. J Gen Virol 74(pt 6):1223–1226PubMedCrossRefGoogle Scholar
  69. 69.
    Lopez S, Arias CF (1993) Protein NS26 is highly conserved among porcine rotavirus strains. Nucleic Acids Res 21:1042PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Lopez S, Espinosa R, Greenberg HB, Arias CF (1994) Mapping the subgroup epitopes of rotavirus protein VP6. Virology 204:153–162PubMedCrossRefGoogle Scholar
  71. 71.
    Lopez S, Arias CF (2004) Multistep entry of rotavirus into cells: a Versaillesque dance. Trends Microbiol 12:271–278PubMedCrossRefGoogle Scholar
  72. 72.
    Lopez S, Arias CF (2006) Early steps in rotavirus cell entry. Curr Top Microbiol Immunol 309:39–66PubMedGoogle Scholar
  73. 73.
    Lopez S, Arias CF (2012) Rotavirus–host cell interactions: an arms race. Curr Opin Virol 2:389–398PubMedCrossRefGoogle Scholar
  74. 74.
    Lopez S, Sanchez-Tacuba L, Moreno J, Arias CF (2016) Rotavirus strategies against the innate antiviral system. Annu Rev Virol 3(1):591–609PubMedCrossRefGoogle Scholar
  75. 75.
    Lopez T, Camacho M, Zayas M, Najera R, Sanchez R, Arias CF, Lopez S (2005) Silencing the morphogenesis of rotavirus. J Virol 79:184–192PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Lopez T, Rojas M, Ayala-Breton C, Lopez S, Arias CF (2005) Reduced expression of the rotavirus NSP5 gene has a pleiotropic effect on virus replication. J Gen Virol 86:1609–1617PubMedCrossRefGoogle Scholar
  77. 77.
    Lopez T, Silva-Ayala D, Lopez S, Arias CF (2011) Replication of the rotavirus genome requires an active ubiquitin-proteasome system. J Virol 85:11964–11971PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Lopez T, Silva-Ayala D, Lopez S, Arias CF (2012) Methods suitable for high-throughput screening of siRNAs and other chemical compounds with the potential to inhibit rotavirus replication. J Virol Methods 179:242–249PubMedCrossRefGoogle Scholar
  79. 79.
    Ludert JE, Feng N, Yu JH, Broome RL, Hoshino Y, Greenberg HB (1996) Genetic mapping indicates that VP4 is the rotavirus cell attachment protein in vitro and in vivo. J Virol 70:487–493PubMedPubMedCentralGoogle Scholar
  80. 80.
    Ludert JE, Krishnaney AA, Burns JW, Vo PT, Greenberg HB (1996) Cleavage of rotavirus VP4 in vivo. J Gen Virol 77(pt 3):391–395PubMedCrossRefGoogle Scholar
  81. 81.
    Martinez MA, Lopez S, Arias CF, Isa P (2013) Gangliosides have a functional role during rotavirus cell entry. J Virol 87:1115–1122PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Maruri-Avidal L, Lopez S, Arias CF (2008) Endoplasmic reticulum chaperones are involved in the morphogenesis of rotavirus infectious particles. J Virol 82:5368–5380PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Mendez E, Arias CF, Lopez S (1993) Binding to sialic acids is not an essential step for the entry of animal rotaviruses to epithelial cells in culture. J Virol 67:5253–5259PubMedPubMedCentralGoogle Scholar
  84. 84.
    Mendez E, Arias CF, Lopez S (1996) Interactions between the two surface proteins of rotavirus may alter the receptor-binding specificity of the virus. J Virol 70:1218–1222PubMedPubMedCentralGoogle Scholar
  85. 85.
    Mendez E, Lopez S, Cuadras MA, Romero P, Arias CF (1999) Entry of rotaviruses is a multistep process. Virology 263:450–459PubMedCrossRefGoogle Scholar
  86. 86.
    Montero H, Arias CF, Lopez S (2006) Rotavirus nonstructural protein NSP3 is not required for viral protein synthesis. J Virol 80:9031–9038PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Montero H, Rojas M, Arias CF, Lopez S (2008) Rotavirus infection induces the phosphorylation of eIF2alpha but prevents the formation of stress granules. J Virol 82:1496–1504PubMedCrossRefGoogle Scholar
  88. 88.
    Mossel EC, Ramig RF (2003) A lymphatic mechanism of rotavirus extraintestinal spread in the neonatal mouse. J Virol 77:12352–12356PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Nava P, Lopez S, Arias CF, Islas S, Gonzalez-Mariscal L (2004) The rotavirus surface protein VP8 modulates the gate and fence function of tight junctions in epithelial cells. J Cell Sci 117:5509–5519PubMedCrossRefGoogle Scholar
  90. 90.
    Padilla-Noriega L, Dunn SJ, Lopez S, Greenberg HB, Arias CF (1995) Identification of two independent neutralization domains on the VP4 trypsin cleavage products VP5* and VP8* of human rotavirus ST3. Virology 206:148–154PubMedCrossRefGoogle Scholar
  91. 91.
    Panas MD, Kedersha N, McInerney GM (2015) Methods for the characterization of stress granules in virus infected cells. Methods 90:57–64PubMedCrossRefGoogle Scholar
  92. 92.
    Pando V, Isa P, Arias CF, Lopez S (2002) Influence of calcium on the early steps of rotavirus infection. Virology 295:190–200PubMedCrossRefGoogle Scholar
  93. 93.
    Patton JT, Spencer E (2000) Genome replication and packaging of segmented double-stranded RNA viruses. Virology 277:217–225PubMedCrossRefGoogle Scholar
  94. 94.
    Patton JT, Vasquez-Del Carpio R, Spencer E (2004) Replication and transcription of the rotavirus genome. Curr Pharm Des 10:3769–3777PubMedCrossRefGoogle Scholar
  95. 95.
    Patton JT, Vasquez-Del Carpio R, Tortorici MA, Taraporewala ZF (2007) Coupling of rotavirus genome replication and capsid assembly. Adv Virus Res 69:167–201PubMedCrossRefGoogle Scholar
  96. 96.
    Perez-Vargas J, Romero P, Lopez S, Arias CF (2006) The peptide-binding and ATPase domains of recombinant hsc70 are required to interact with rotavirus and reduce its infectivity. J Virol 80:3322–3331PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Piron M, Vende P, Cohen J, Poncet D (1998) Rotavirus RNA-binding protein NSP3 interacts with eIF4GI and evicts the poly(A) binding protein from eIF4F. EMBO J 17:5811–5821PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Poncet D (2003) Translation of rotavirus mRNAs in the infected cell. In: Desselberger U, Gray J (eds) Viral gastroenteritis. Elsevier, Amsterdam, pp 185–205CrossRefGoogle Scholar
  99. 99.
    Ramig RF (2004) Pathogenesis of intestinal and systemic rotavirus infection. J Virol 78:10213–10220PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Realpe M, Espinosa R, Lopez S, Arias CF (2010) Rotaviruses require basolateral molecules for efficient infection of polarized MDCKII cells. Virus Res 147:231–241PubMedCrossRefGoogle Scholar
  101. 101.
    Rehwinkel J, Reis e Sousa C (2010) RIGorous detection: exposing virus through RNA sensing. Science 327:284–286PubMedCrossRefGoogle Scholar
  102. 102.
    Rojas M, Arias CF, Lopez S (2010) Protein kinase R is responsible for the phosphorylation of eIF2alpha in rotavirus infection. J Virol 84:10457–10466PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Rubio RM, Mora SI, Romero P, Arias CF, Lopez S (2013) Rotavirus prevents the expression of host responses by blocking the nucleocytoplasmic transport of polyadenylated mRNAs. J Virol 87:6336–6345PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Ruiz AM, Lopez IV, Lopez S, Espejo RT, Arias CF (1988) Molecular and antigenic characterization of porcine rotavirus YM, a possible new rotavirus serotype. J Virol 62:4331–4336PubMedPubMedCentralGoogle Scholar
  105. 105.
    Ruiz MC, Cohen J, Michelangeli F (2000) Role of Ca2+ in the replication and pathogenesis of rotavirus and other viral infections. Cell Calcium 28:137–149PubMedCrossRefGoogle Scholar
  106. 106.
    Rutkowski DT, Kaufman RJ (2004) A trip to the ER: coping with stress. Trends Cell Biol 14:20–28PubMedCrossRefGoogle Scholar
  107. 107.
    Sanchez-San Martin C, Lopez T, Arias CF, Lopez S (2004) Characterization of rotavirus cell entry. J Virol 78:2310–2318PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Sanchez-Tacuba L, Rojas M, Arias CF, Lopez S (2015) Rotavirus controls activation of the 2′-5′-oligoadenylate synthetase/RNase L pathway using at least two distinct mechanisms. J Virol 89:12145–12153PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Saxena K, Blutt SE, Ettayebi K, Zeng XL, Broughman JR, Crawford SE, Karandikar UC, Sastri NP, Conner ME, Opekun AR, Graham DY, Qureshi W, Sherman V, Foulke-Abel J, In J, Kovbasnjuk O, Zachos NC, Donowitz M, Estes MK (2016) Human intestinal enteroids: a new model to study human rotavirus infection, host restriction, and pathophysiology. J Virol 90:43–56CrossRefGoogle Scholar
  110. 110.
    Sen A, Pruijssers AJ, Dermody TS, Garcia-Sastre A, Greenberg HB (2011) The early interferon response to rotavirus is regulated by PKR and depends on MAVS/IPS-1, RIG-I, MDA-5, and IRF3. J Virol 85:3717–3732PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Silva-Ayala D, Lopez T, Gutierrez M, Perrimon N, Lopez S, Arias CF (2013) Genome-wide RNAi screen reveals a role for the ESCRT complex in rotavirus cell entry. Proc Natl Acad Sci U S A 110:10270–10275PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Silverman RH (2007) Viral encounters with 2′,5′-oligoadenylate synthetase and RNase L during the interferon antiviral response. J Virol 81:12720–12729PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Sonenberg N, Hinnebusch AG (2009) Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136:731–745PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Svensson L, Desselberger U, Greenberg HB, Estes MK (2016) Introduction. In: Svensson L, Desselberger U, Greenberg HB, Estes MK (eds) Viral gastroenteritis: molecular epidemiology and pathogenesis. Elsevier, London, pp xxi–xxviGoogle Scholar
  115. 115.
    Tate JE, Burton AH, Boschi-Pinto C, Parashar UD, World Health Organization-Coordinated Global Rotavirus Surveillance N (2016) Global, regional, and national estimates of rotavirus mortality in children <5 years of age, 2000–2013. Clin Infect Dis 62(suppl 2):S96–S105PubMedCrossRefGoogle Scholar
  116. 116.
    Torres-Flores JM, Arias CF (2015) Tight junctions go viral! Viruses 7:5145–5154PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Torres-Flores JM, Silva-Ayala D, Espinoza MA, Lopez S, Arias CF (2015) The tight junction protein JAM-A functions as coreceptor for rotavirus entry into MA104 cells. Virology 475:172–178PubMedCrossRefGoogle Scholar
  118. 118.
    Torres-Vega MA, Gonzalez RA, Duarte M, Poncet D, Lopez S, Arias CF (2000) The C-terminal domain of rotavirus NSP5 is essential for its multimerization, hyperphosphorylation and interaction with NSP6. J Gen Virol 81:821–830PubMedCrossRefGoogle Scholar
  119. 119.
    Trujillo-Alonso V, Maruri-Avidal L, Arias CF, Lopez S (2011) Rotavirus infection induces the unfolded protein response of the cell and controls it through the nonstructural protein NSP3. J Virol 85:12594–12604PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Velazquez FR, Matson DO, Calva JJ, Guerrero L, Morrow AL, Carter-Campbell S, Glass RI, Estes MK, Pickering LK, Ruiz-Palacios GM (1996) Rotavirus infections in infants as protection against subsequent infections. N Engl J Med 335:1022–1028PubMedCrossRefGoogle Scholar
  121. 121.
    Vesikari T (2016) Rotavirus vaccines and vaccination. In: Svensson L, Desselberger U, Greenberg HB, Estes MK (eds) Viral gastroenteritis: molecular epidemiology and pathogenesis. Elsevier, London, pp 301–328CrossRefGoogle Scholar
  122. 122.
    Vijay-Kumar M, Gentsch JR, Kaiser WJ, Borregaard N, Offermann MK, Neish AS, Gewirtz AT (2005) Protein kinase R mediates intestinal epithelial gene remodeling in response to double-stranded RNA and live rotavirus. J Immunol 174:6322–6331PubMedCrossRefGoogle Scholar
  123. 123.
    Walker CL, Rudan I, Liu L, Nair H, Theodoratou E, Bhutta ZA, O'Brien KL, Campbell H, Black RE (2013) Global burden of childhood pneumonia and diarrhoea. Lancet 381:1405–1416PubMedCrossRefGoogle Scholar
  124. 124.
    Walsh D, Mohr I (2011) Viral subversion of the host protein synthesis machinery. Nat Rev Microbiol 9:860–875PubMedCrossRefGoogle Scholar
  125. 125.
    White JP, Lloyd RE (2012) Regulation of stress granules in virus systems. Trends Microbiol 20:175–183PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Wolf M, Vo PT, Greenberg HB (2011) Rhesus rotavirus entry into a polarized epithelium is endocytosis dependent and involves sequential VP4 conformational changes. J Virol 85:2492–2503PubMedCrossRefGoogle Scholar
  127. 127.
    Wolf M, Deal EM, Greenberg HB (2012) Rhesus rotavirus trafficking during entry into MA104 cells is restricted to the early endosome compartment. J Virol 86:4009–4013PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Wollert T, Hurley JH (2010) Molecular mechanism of multivesicular body biogenesis by ESCRT complexes. Nature (Lond) 464:864–869CrossRefGoogle Scholar
  129. 129.
    Wu J, Kaufman RJ (2006) From acute ER stress to physiological roles of the unfolded protein response. Cell Death Differ 13:374–384PubMedCrossRefGoogle Scholar
  130. 130.
    Zambrano JL, Diaz Y, Pena F, Vizzi E, Ruiz MC, Michelangeli F, Liprandi F, Ludert JE (2008) Silencing of rotavirus NSP4 or VP7 expression reduces alterations in Ca2+ homeostasis induced by infection of cultured cells. J Virol 82:5815–5824PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Zambrano JL, Ettayebi K, Maaty WS, Faunce NR, Bothner B, Hardy ME (2011) Rotavirus infection activates the UPR but modulates its activity. Virol J 8:359PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Zarate S, Espinosa R, Romero P, Guerrero CA, Arias CF, Lopez S (2000) Integrin alpha2beta1 mediates the cell attachment of the rotavirus neuraminidase-resistant variant nar3. Virology 278:50–54PubMedCrossRefGoogle Scholar
  133. 133.
    Zarate S, Espinosa R, Romero P, Mendez E, Arias CF, Lopez S (2000) The VP5 domain of VP4 can mediate attachment of rotaviruses to cells. J Virol 74:593–599PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Zarate S, Cuadras MA, Espinosa R, Romero P, Juarez KO, Camacho-Nuez M, Arias CF, Lopez S (2003) Interaction of rotaviruses with Hsc70 during cell entry is mediated by VP5. J Virol 77:7254–7260PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Zarate S, Romero P, Espinosa R, Arias CF, Lopez S (2004) VP7 mediates the interaction of rotaviruses with integrin alphavbeta3 through a novel integrin-binding site. J Virol 78:10839–10847PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavacaMexico

Personalised recommendations