Advertisement

Test System for Mapping Interdependencies of Critical Infrastructures for Intelligent Management in Smart Cities

  • Irina Ciornei
  • Constantinos Heracleous
  • Marios Kyriakou
  • Demetrios Eliades
  • Costas K. Constantinou
  • Elias Kyriakides
Chapter
Part of the Progress in IS book series (PROIS)

Abstract

The critical infrastructures such as power distribution networks (PDN), water networks, transportation and telecommunication networks that are settled within the area of a city produce a large amount of data from applications such as AMI, SCADA, Renewable Energy Management Systems, Asset Management Systems, and weather data. To convert these massive data into useful information, visualization is an effective solution. Visualizing this large amount of data in a holistic view of critical infrastructures mapping at a city level is a missing link. Visualization means here to convert the flow of continuous coming data into useful information. In this paper we propose a technique to visualize critical infrastructure data by using a system that consists of Geographic Information System (GIS) for buffer spatial analysis and Google Earth in sync with realistic planning and operation methodologies specific for each infrastructure modelled. The major goal of this work is to design, model and validate a benchmark system that is capable to visualize and map as well as to prepare the next inter-linking phase of modelling and analysis of interdependencies of several critical infrastructures. Furthermore, we aim to provide the grounds for a theoretical framework that can capture the interdependencies between critical infrastructures using techniques from graph theory, machine learning, econometric science and operation research. The proposed framework for modeling the interdependencies between several infrastructures within a city territory is based on hybrid system automata and it is among the first steps needed in developing fundamental mechanisms for resilient management of critical infrastructures and the safe operation of smart cities. An example on how this framework can be applied is also presented.

Keywords

City planning Critical infrastructures GIS Power distribution systems QGIS Telecommunication networks Visualization Water networks 

References

  1. Bagchi, A., Sprintson, A., & Singh, C. (2009, October 4–6). Modeling the impact of fire spread on the electrical distribution network of a virtual city. Paper presented at 2009 North American Power Symposium (NAPS), Starkville (pp. 1–6).Google Scholar
  2. Beccuti, M., Chiaradonna, S., Giandomenico, F. D., Donatelli, S., Dondossola, G., & Franceschinis, G. (2012). Quantification of dependencies between electrical and information infrastructures. International Journal of Critical Infrastructure Protection, 5(1), 14–27.CrossRefGoogle Scholar
  3. Berry, J., Boman, E., Riesen, L. A., Hart, W. E., Phillips, C. A., & Watson, J. -P. (2012). User’s manual TEVA-SPOT toolkit (version 2.5.2). Cincinnati: United States Environmental Protection Agency.Google Scholar
  4. Brumbelow, K., Torres, J., Guikema, S., Bristow, E., & Kanta, L. (2007, May 15–19). Virtual cities for water distribution and infrastructure system research. Paper presented at 2007 World Environmental and Water Resources Congress, Tampa (pp. 1–7).Google Scholar
  5. Chopade, P., & Bikdash, M. (2011, November 3). Critical infrastructure interdependency modeling: Using graph models to assess the vulnerability of smart power grid and SCADA networks. Paper presented at 8th International Conference Expo on Emerging Technologies for a Smarter World (CEWIT), Long Island (pp. 1–6).Google Scholar
  6. De Porcellinis, S., Oliva, G., Panzieri, S., & Setola, R. (2009, March 23–25). A holistic-reductionistic approach for modeling interdependencies. In C. Palmer & S. Shenoi (Eds.), Critical infrastructure protection III. Paper presented at 3rd Annual IFIP WG 11.10 International Conference on Critical Infrastructure Protection, Hanover (pp. 215–227).Google Scholar
  7. Dorini, G., Jonkergouw, P., Kapelan, Z., & Savic, D. (2010). SLOTS: Effective algorithm for sensor placement in water distribution systems. Journal of Water Resources Planning and Management, 136(6), 620–628.CrossRefGoogle Scholar
  8. Eliades, D. G., & Polycarpou, M. M. (2010). A Fault diagnosis and security framework for water systems. IEEE Transactions on Control Systems Technology, 18(6), 1254–1265.CrossRefGoogle Scholar
  9. European Commission. (2004). Critical infrastructure protection in the fight against terrorism (communication). http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:52004DC0702. Accessed October 31, 2016.
  10. Eusgeld, I., Henzi, D., & Kröger, W. (2008). Comparative evaluation of modeling and simulation techniques for interdependent critical infrastructures (scientific report). Laboratorium für Sicherheitsanalytik (ETH Zürich). http://www.babs.admin.ch/content/babs-internet/it/aufgabenbabs/ski/publikationen/_jcr_content/contentPar/accordion/accordionItems/grundlagen_und_forsc/accordionPar/downloadlist_1586716/downloadItems/352_1461327458429.download/comparativeevaluation.pdf. Accessed October 31, 2016.
  11. Glover, F. (1990). Tabu search—part II. ORSA Journal on Computing, 2(1), 4–32.CrossRefGoogle Scholar
  12. Griot, C. (2010). Modelling and simulation for critical infrastructure interdependency assessment: A meta-review for model characterisation. International Journal of Critical Infrastructures, 6(4), 363–379.CrossRefGoogle Scholar
  13. Gursesli, O., & Desrochers, A. A. (2003, October 5–8). Modeling infrastructure interdependencies using Petri nets. Paper presented at 2003 IEEE International Conference on Systems, Man and Cybernetics, Washington (pp. 1506–1512).Google Scholar
  14. Hart, W. E., & Murray, R. (2010). Review of sensor placement strategies for contamination warning systems in drinking water distribution systems. Journal of Water Resources Planning and Management, 136(6), 611–619.CrossRefGoogle Scholar
  15. Heracleous, C. (2016). Micropolis interdependency modeling using open hybrid automata. Cornell University Library. https://arxiv.org/abs/1609.09395. Accessed October 31, 2016.
  16. Heracleous, C., Oliva, G., & Setola, R. (2013).System of systems modeling—state of art (WP200—system of systems modeling). Project FACIES, https://drive.google.com/file/d/0B0e_zcKp2X5wTFNtUGNsaFEtT1k/edit. Accessed October 31, 2016.
  17. Heracleous, C., Panayiotou, C. G., Polycarpou, M. M., & Ellinas, G. (2015, April 26–May 1). Modeling interdependent critical infrastructures using open hybrid automata. Paper presented at 2015 IEEE Conference on Computer Communications Workshops, Hong Kong (pp. 671–676).Google Scholar
  18. Holden, R., Val, D. V., Burkhard, R., & Nodwell, S. (2013). A network flow model for interdependent infrastructures at the local scale. Safety Science, 53, 51–60.CrossRefGoogle Scholar
  19. IEEE PES—Institute of Electrical and Electronics Engineers Power and Energy Society. (2016). Distribution test feeders. https://ewh.ieee.org/soc/pes/dsacom/testfeeders/. Accessed October 31, 2016.
  20. Jain, K., & Vazirani, V. V. (2001). Approximation algorithms for metric facility location and k-Median problems using the primal-dual schema and Lagrangian relaxation. Journal of the Association for Computing Machinery, 48(2), 274–296.CrossRefGoogle Scholar
  21. Kaegi, M., Mock, R., & Kroger, W. (2009). Analyzing maintenance strategies by agent-based simulations: A feasibility study. Reliability Engineering & System Safety, 94(9), 1416–1421.CrossRefGoogle Scholar
  22. KIOS—Research Center for Intelligent Systems and Networks (University of Cyprus). (2016). Micropolis-testbed. GitHub, https://github.com/KIOS-Research/micropolis-testbed. Accessed October 31, 2016.
  23. Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220(4598), 671–680.CrossRefGoogle Scholar
  24. Krause, A., Leskovec, J., Guestrin, C., van Briesen, J., & Faloutsos, C. (2008). Efficient sensor placement optimization for securing large water distribution networks. Journal of Water Resources Planning and Management, 134(6), 516–526.CrossRefGoogle Scholar
  25. Leoleis, G. A., & Venieris, I. S. (2007). Fast MIPv6 extensions supporting seamless multicast handovers. Computer Networks, 51(9), 2379–2396.CrossRefGoogle Scholar
  26. McDaniels, T., Chang, S., Peterson, K., Mikawoz, J., & Reed, D. (2007). Empirical framework for characterizing infrastructure failure interdependencies. Journal of Infrastructure Systems, 13(3), 175–184.CrossRefGoogle Scholar
  27. Mitchell, T. M. (1997). Machine Learning. New York: McGraw-Hill.Google Scholar
  28. Ostfeld, A., Uber, J. G., Salomons, E., Berry, J. W., Hart, W. E., Phillips, C. A., et al. (2008). The battle of the water sensor networks (BWSN): A design challenge for engineers and algorithms. Journal of Water Resources Planning and Management, 134(6), 556–568.CrossRefGoogle Scholar
  29. Ouyang, M. (2014). Review on modeling and simulation of interdependent critical infrastructure systems. Reliability Engineering & System Safety, 121, 43–60.CrossRefGoogle Scholar
  30. Pajukoski, K., & Savusalo, J. (1997, September 1–4). Wideband CDMA test system. Paper presented at 8th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, Helsinki (pp. 669–672).Google Scholar
  31. Panzieri, S., Setola, R., & Ulivi, G. (2004, October 25–27). An agent based simulator for critical interdependent infrastructures. In Securing critical infrastructures. Paper presented at 2004 Conference on Critical Infrastructures (CRIS), Grenoble.Google Scholar
  32. Pederson, P., Dudenhoeffer, D., Hartley, S., & Permann, M. (2006). Critical infrastructure interdependency modeling: A survey of U.S. and international research. Idaho Falls: Idaho National Laboratory.Google Scholar
  33. Portalés, C., Lerma, J. L., & Navarro, S. (2010). Augmented reality and photogrammetry: A synergy to visualize physical and virtual city environments. ISPRS Journal of Photogrammetry and Remote Sensing, 65(1), 134–142.CrossRefGoogle Scholar
  34. Preis, A., & Ostfeld, A. (2008). Multiobjective contaminant sensor network design for water distribution systems. Journal of Water Resources Planning and Management, 134(4), 366–377.CrossRefGoogle Scholar
  35. Rappaport, T. (2001). Wireless communications: Principles and practice. Upper Saddle River: Prentice Hall.Google Scholar
  36. Rossman, L. A. (2000). EPANET 2 (users manual). Cincinnati: United States Environmental Protection Agency.Google Scholar
  37. Satumtira, G., & Dueñas-Osorio, L. (2010). Synthesis of modeling and simulation methods on critical infrastructure interdependencies research. In G. Kasthurirangan & P. Srinivas (Eds.), Sustainable and resilient critical infrastructure systems (pp. 1–51). Berlin/Heidelberg: Springer.CrossRefGoogle Scholar
  38. Setola, R., & Porcellinis, S. (2009). Complex networks and critical infrastructures. In A. Chiuso et al. (Eds.), Modelling, estimation and control of networked complex systems (pp. 91–106). Berlin/Heidelberg: Springer.CrossRefGoogle Scholar
  39. Siemens, (2005). Planning of electric power distribution (technical principles). Erlangen: Siemens.Google Scholar
  40. Torres, J., Bristow, E., & Brumbelow, K. (2006, May 8–10). Micropolis: A virtual city for water distribution systems research applications. Paper presented at 2006 AWRA Spring Specialty Conference: GIS and Water Resources IV, Denver.Google Scholar
  41. University of Washington (2016). Power systems test case archive. https://www.ee.washington.edu/research/pstca/. Accessed October 31, 2016.
  42. Videira Lopes, C., & Lindstrom, C. (2012). Virtual cities in urban planning: The Uppsala case study. Journal of theoretical and applied electronic commerce research, 7, 88–100.CrossRefGoogle Scholar
  43. Weickgenannt, M., Kapelan, Z., Blokker, M., & Savic, D. A. (2010). Risk-based sensor placement for contaminant detection in water distribution systems. Journal of Water Resources Planning and Management, 136(6), 629–636.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Irina Ciornei
    • 1
    • 2
  • Constantinos Heracleous
    • 1
  • Marios Kyriakou
    • 1
  • Demetrios Eliades
    • 1
  • Costas K. Constantinou
    • 1
  • Elias Kyriakides
    • 1
  1. 1.Department of Electrical and Computer EngineeringKIOS Research and Innovation Center of Excellence, University of CyprusNicosiaCyprus
  2. 2.MicroDERLabPolitehnica University of BucharestBucharestRomania

Personalised recommendations