A Hybrid Convolutional Neural Network for Plankton Classification

  • Jialun Dai
  • Zhibin Yu
  • Haiyong ZhengEmail author
  • Bing Zheng
  • Nan Wang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10118)


Plankton are fundamental and essential to marine ecosystem, and its survey is significant for sustainable development and ecosystem balance of oceans. The large amount of plankton species and complex relationship among different classes bring difficulty for us to design an automatic plankton classification system. Thus, we develop our model based on convolutional neural network and aim to overcome these shortages. We consider two different ways to extract global and local features to describe shape and texture information of plankton. Furthermore, we design a pyramid fully connected structure to merge different inner products from each sub networks. The experimental results prove our model can take advantage of multiple features and performs better than original convolutional neural network.


Support Vector Machine Original Image Convolutional Neural Network Canny Edge Detector Convolutional Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the National Natural Science Foundation of China under Grant Nos. 61271406, 61301240, and the Fundamental Research Funds for the Central Universities under Grant No. 201562023.


  1. 1.
    Lalli, C., Parsons, T.R.: Biological Oceanography: An Introduction. Butterworth-Heinemann, New York (1997)Google Scholar
  2. 2.
    Sardet, C.: Plankton: Wonders of the Drifting World. University of Chicago Press, Chicago (2015)CrossRefGoogle Scholar
  3. 3.
    Reynaud, E.G. (ed.): Imaging Marine Life: Macrophotography and Microscopy Approaches for Marine Biology. Wiley, Hoboken (2013)Google Scholar
  4. 4.
    Davis, C.S., Thwaites, F.T., Gallager, S.M., Hu, Q.: A three-axis fast-tow digital video plankton recorder for rapid surveys of plankton taxa and hydrography. Limnolo.Ocean. Methods 3, 59–74 (2005)CrossRefGoogle Scholar
  5. 5.
    Jaffe, J.S., Roberts, P.L.D., Ratelle, D., Laxton, B., Orenstein, E., Carter, M., Hilbern, M.: Scripps plankton camera system (2015)Google Scholar
  6. 6.
    Orenstein, E.C., Beijbom, O., Peacock, E.E., Sosik, H.M.: Whoi-plankton-a large scale fine grained visual recognition benchmark dataset for plankton classification. arXiv preprint arXiv:1510.00745 (2015)
  7. 7.
    Benfield, M.C., Grosjean, P., Culverhouse, P.F., Irigoien, X., Sieracki, M.E., Lopez-Urrutia, A., Dam, H.G., Hu, Q., Davis, C.S., Hansen, A., Pilskaln, C.H., Riseman, E.M., Schultz, H., Utgoff, P.E., Gorsky, G.: RAPID: research on automated plankton identification. Oceanography 20, 172–187 (2007)CrossRefGoogle Scholar
  8. 8.
    MacLeod, N., Benfield, M., Culverhouse, P.: Time to automate identification. Nature 467, 154–155 (2010)CrossRefGoogle Scholar
  9. 9.
    Erickson, J.S., Hashemi, N., Sullivan, J.M., Weidemann, A.D., Ligler, F.S.: In situ phytoplankton analysis: theres plenty of room at the bottom. Anal. Chem. 84, 839–850 (2011)CrossRefGoogle Scholar
  10. 10.
    Samson, S., Hopkins, T., Remsen, A., Langebrake, L., Sutton, T., Patten, J.: A system for high-resolution zooplankton imaging. IEEE J. Ocean. Eng. 26, 671–676 (2001)CrossRefGoogle Scholar
  11. 11.
    Tang, X., Stewart, W.K., Vincent, L., Huang, H., Marra, M., Gallager, S.M., Davis, C.S.: Automatic plankton image recognition. Artif. Intell. Biol. Agric. 12, 177–199 (1998)CrossRefzbMATHGoogle Scholar
  12. 12.
    Tang, X., Lin, F., Samson, S., Remsen, A.: Binary plankton image classification. IEEE J. Ocean.Eng. 31, 728–735 (2006)CrossRefGoogle Scholar
  13. 13.
    Grosjean, P., Picheral, M., Warembourg, C., Gorsky, G.: Enumeration, measurement, and identification of net zooplankton samples using the zooscan digital imaging system. ICES J. Mar. Sci. J. Conseil 61, 518–525 (2004)CrossRefGoogle Scholar
  14. 14.
    Gorsky, G., Ohman, M.D., Picheral, M., Gasparini, S., Stemmann, L., Romagnan, J.B., Cawood, A., Pesant, S., García-Comas, C., Prejger, F.: Digital zooplankton image analysis using the zooscan integrated system. J. Plankton Res. 32, 285–303 (2010)CrossRefGoogle Scholar
  15. 15.
    Sosik, H.M., Olson, R.J.: Automated taxonomic classification of phytoplankton sampled with imaging-in-flow cytometry. Limnol. Oceanogr. Methods 5, 204–216 (2007)CrossRefGoogle Scholar
  16. 16.
    Buf, H., Bayer, M.M.: Automatic Diatom Identification. World Scientific, Singapore (2002)CrossRefzbMATHGoogle Scholar
  17. 17.
    Culverhouse, P.F., Williams, R., Reguera, B., Herry, V., González-Gil, S.: Do experts make mistakes? A comparison of human and machine identification of dinoflagellates. Mar. Ecol. Prog. Ser. 247, 17–25 (2003)CrossRefGoogle Scholar
  18. 18.
    Khosla, A., Jayadevaprakash, N., Yao, B., Li, F.F.: Novel dataset for fine-grained image categorization: stanford dogs. In: Proceedings of CVPR Workshop on Fine-Grained Visual Categorization (FGVC) (2011)Google Scholar
  19. 19.
    Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)MathSciNetzbMATHGoogle Scholar
  20. 20.
    LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)CrossRefGoogle Scholar
  21. 21.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp. 1097–1105 (2012)Google Scholar
  22. 22.
    Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-10590-1_53 Google Scholar
  23. 23.
    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
  24. 24.
    Fukushima, K.: Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 36, 193–202 (1980)CrossRefzbMATHGoogle Scholar
  25. 25.
    LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackel, L.D.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1, 541–551 (1989)CrossRefGoogle Scholar
  26. 26.
    LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998)CrossRefGoogle Scholar
  27. 27.
    Zheng, H., Zhao, H., Sun, X., Gao, H., Ji, G.: Automatic setae segmentation from chaetoceros microscopic images. Microsc. Res. Tech. 77, 684–690 (2014)CrossRefGoogle Scholar
  28. 28.
    Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: 1998 Sixth International Conference on Computer Vision, pp. 839–846. IEEE (1998)Google Scholar
  29. 29.
    Scharr, H.: Optimal operators in digital image processing. Ph.D. thesis (2000)Google Scholar
  30. 30.
    Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8, 679–698 (1986)CrossRefGoogle Scholar
  31. 31.
    Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)Google Scholar
  32. 32.
    Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: Convolutional architecture for fast feature embedding. arXiv preprint arXiv:1408.5093 (2014)

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Jialun Dai
    • 1
  • Zhibin Yu
    • 1
  • Haiyong Zheng
    • 1
    Email author
  • Bing Zheng
    • 1
  • Nan Wang
    • 1
  1. 1.College of Information Science and EngineeringOcean University of ChinaShandongChina

Personalised recommendations