Quantitative Analysis of a Bioplausible Model of Misperception of Slope in the Café Wall Illusion

  • Nasim Nematzadeh
  • David M. W. Powers
  • Trent Lewis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10118)

Abstract

This paper presents a model explaining tilt illusion effect in the Café Wall pattern. In this geometric illusion, we perceive horizontal edges as tilted. We explain this as the result of innate retinal/gangliar visual processing of the pattern. Our bioplausible model is based on a simple early layer using Difference of Gaussian over simple ON-center and OFF-center receptive fields, with a quantification module replacing later layers of a Deep Neural Network. The experimental results show that this bioplausible filtering technique can explain the tilt illusion of the Café Wall pattern. Our statistical analysis of tilt provides a quantitative measurement and an empirically testable prediction for the degree of tilt. This shows that the Difference of Gaussian reveals cues for perception and clues about the illusions we perceive.

Notes

Acknowledgement

Nasim Nematzadeh was supported by an Australian Postgraduate Award (APA) scholorship for her Ph.D.

References

  1. 1.
    Bengio, Y.: Learning deep architectures for AI. Found. Trends\(\textregistered \) Mach. Learn. 2(1), 1–127 (2009)Google Scholar
  2. 2.
    Blakeslee, B., McCourt, M.E.: A multiscale spatial filtering account of the White effect, simultaneous brightness contrast and grating induction. Vis. Res. 39(26), 4361–4377 (1999)CrossRefGoogle Scholar
  3. 3.
    Carandini, M.: Receptive fields and suppressive fields in the early visual system. Cogn. Neurosci. 3, 313–326 (2004)Google Scholar
  4. 4.
    Duda, R.O., Hart, P.E.: Use of the Hough transformation to detect lines and curves in pictures. Commun. ACM 15(1), 11–15 (1972)CrossRefMATHGoogle Scholar
  5. 5.
    Earle, D.C., Maskell, S.J.: Fraser cords and reversal of the Café Wall illusion. Perception 22(4), 383–390 (1993)CrossRefGoogle Scholar
  6. 6.
    Enroth-Cugell, C., Robson, J.G.: The contrast sensitivity of retinal ganglion cells of the cat. J. Physiol. 187(3), 517–552 (1966)CrossRefGoogle Scholar
  7. 7.
    Field, G.D., Chichilnisky, E.J.: Information processing in the primate retina: circuitry and coding. Annu. Rev. Neurosci. 30, 1–30 (2007)CrossRefGoogle Scholar
  8. 8.
    Gollisch, T., Meister, M.: Eye smarter than scientists believed: neural computations in circuits of the retina. Neuron 65(2), 150–164 (2010)CrossRefGoogle Scholar
  9. 9.
    Gregory, R.L., Heard, P.: Border locking and the Café Wall illusion. Perception 8(4), 365–380 (1979)CrossRefGoogle Scholar
  10. 10.
    Grossberg, S.: The link between brain learning, attention, and consciousness. Conscious. Cogn. 8(1), 1–44 (1999)CrossRefGoogle Scholar
  11. 11.
    Hough, P.V.: Method and means for recognizing complex patterns (1962)Google Scholar
  12. 12.
    Huang, J.Y., Protti, D.A.: The impact of inhibitory mechanisms in the inner retina on spatial tuning of RGCs. Sci. Rep. 6 (2016)Google Scholar
  13. 13.
    Hubel, D.H., Wiesel, T.N.: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. 160(1), 106–154 (1962)CrossRefGoogle Scholar
  14. 14.
    Illingworth, J., Kittler, J.: A survey of the Hough transform. Comput. Vis. Graph. Image Process. 44(1), 87–116 (1988)CrossRefGoogle Scholar
  15. 15.
    Jameson, D., Hurvich, L.M.: Essay concerning color constancy. Annu. Rev. Psychol. 40(1), 1–24 (1989)CrossRefGoogle Scholar
  16. 16.
    Kitaoka, A., Pinna, B., Brelstaff, G.: Contrast polarities determine the direction of Café Wall tilts. Perception 33(1), 11–20 (2004)CrossRefGoogle Scholar
  17. 17.
    Kuffler, S.W.: Neurons in the retina: organization, inhibition and excitation problems. Cold Spring Harb. Symp. Quant. Biol. 17, 281–292 (1952). Cold Spring Harbor Laboratory PressCrossRefGoogle Scholar
  18. 18.
    LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)CrossRefGoogle Scholar
  19. 19.
    Linsenmeier, R.A., Frishman, L.J., Jakiela, H.G., Enroth-Cugell, C.: Receptive field properties of X and Y cells in the cat retina derived from contrast sensitivity measurements. Vis. Res. 22(9), 1173–1183 (1982)CrossRefGoogle Scholar
  20. 20.
    Lourens, T.: Modeling retinal high and low contrast sensitivity filters. In: Mira, J., Sandoval, F. (eds.) IWANN 1995. LNCS, vol. 930, pp. 61–68. Springer, Heidelberg (1995). doi:10.1007/3-540-59497-3_157 CrossRefGoogle Scholar
  21. 21.
    Lv, Y., Jiang, G., Yu, M., Xu, H., Shao, F., Liu, S.: Difference of Gaussian statistical features based blind image quality assessment: a deep learning approach. In: IEEE International Conference on Image Processing (ICIP), pp. 2344–2348 (2015)Google Scholar
  22. 22.
    Marr, D., Hildreth, E.: Theory of edge detection. Proc. Roy. Soc. Lond. B: Biol. Sci. 207(1167), 187–217 (1980)CrossRefGoogle Scholar
  23. 23.
    Marr, D., Ullman, S.: Directional selectivity and its use in early visual processing. Proc. Roy. Soc. Lond. B: Biol. Sci. 211(1183), 151–180 (1981)CrossRefGoogle Scholar
  24. 24.
    Morgan, M.J., Moulden, B.: The Münsterberg figure and twisted cords. Vis. Res. 26(11), 793–800 (1986)CrossRefGoogle Scholar
  25. 25.
    Nematzadeh, N., Lewis, T.W., Powers, D.M.W.: Bioplausible multiscale filtering in retinal to cortical processing as a model of computer vision. In: ICAART 2015-International Conference on Agents and Artificial Intelligence. SCITEPRESS (2015)Google Scholar
  26. 26.
    Nematzadeh, N., Powers, D.M.W.: A quantitative analysis of tilt in the Café Wall illusion: a bioplausible model for foveal and peripheral vision. In: DICTA 2016-International Conference on Digital Image Computing: Techniques and Applications (2016)Google Scholar
  27. 27.
    Nematzadeh, N.: A neurophysiological model for geometric visual illusions. Ph.D. thesis, Flinders University (in preparation)Google Scholar
  28. 28.
    Passaglia, C.L., Enroth-Cugell, C., Troy, J.B.: Effects of remote stimulation on the mean firing rate of cat retinal ganglion cells. J. Neurosci. 21(15), 5794–5803 (2001)Google Scholar
  29. 29.
    Powers, D.M.W.: Lateral interaction behaviour derived from neural packing considerations. School of Electrical Engineering and Computer Science, University of New South Wales (1983)Google Scholar
  30. 30.
    Ratliff, F., Knight, B., Graham, N.: On tuning and amplification by lateral inhibition. Proc. Nat. Acad. Sci. 62(3), 733–740 (1969)CrossRefGoogle Scholar
  31. 31.
    Robson, J.G.: Frequency domain visual processing. In: Braddick, O.J., Sleigh, A.C. (eds.) Physical and Biological Processing of Images. SSINF, vol. 11, pp. 73–87. Springer, Heidelberg (1983). doi:10.1007/978-3-642-68888-1_6 CrossRefGoogle Scholar
  32. 32.
    Rodieck, R.W., Stone, J.: Analysis of receptive fields of cat retinal ganglion cells. J. Neurophysiol. 28(5), 833–849 (1965)Google Scholar
  33. 33.
    Romeny, B.M.: Front-End Vision and Multiscale Image Analysis: Multiscale Computer Vision Theory and Applications, Written in Mathematica. Springer Science & Business Media, Heidelberg (2008)Google Scholar
  34. 34.
    Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)CrossRefGoogle Scholar
  35. 35.
    Von der Malsburg, C.: Self-organization of orientation sensitive cells in the striate cortex. Kybernetik 14(2), 85–100 (1973)CrossRefGoogle Scholar
  36. 36.
    Westheimer, G.: Irradiation, border location, and the shifted chessboard pattern. Perception 36(4), 483–494 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Nasim Nematzadeh
    • 1
  • David M. W. Powers
    • 1
  • Trent Lewis
    • 1
  1. 1.CSEMFlinders UniversityAdelaideAustralia

Personalised recommendations