A Context-Aware Fitness Function Based on Feature Selection for Evolutionary Learning of Characteristic Graph Patterns

  • Fumiya TokuharaEmail author
  • Tetsuhiro Miyahara
  • Tetsuji Kuboyama
  • Yusuke Suzuki
  • Tomoyuki Uchida
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10191)


We propose a context-aware fitness function based on feature selection for evolutionary learning of characteristic graph patterns. The proposed fitness function estimates the fitness of a set of correlated individuals rather than the sum of fitness of the individuals, and specifies the fitness of an individual as its contribution degree in the context of the set. We apply the proposed fitness function to our evolutionary learning, based on Genetic Programming, for obtaining characteristic graph patterns from positive and negative graph data. We report some experimental results on our evolutionary learning of characteristic graph patterns, using the context-aware fitness function and a previous fitness function ignoring context.



We would like to thank the anonymous referees for their helpful comments. This work was partially supported by JSPS KAKENHI Grant Numbers JP15K00312 and JP26280090.


  1. 1.
    Horvath, T., Ramon, J., Wrobel, S.: Frequent subgraph mining in outerplanar graphs. Data Min. Knowl. Disc. 21, 472–508 (2010)MathSciNetCrossRefGoogle Scholar
  2. 2.
    National Cancer Institute. The NCI Open Database. Release 1 Files (1999)Google Scholar
  3. 3.
    Katagiri, H., Hirasawa, K., Hu, J.: Genetic network programming - application to intelligent agents. In: Proceedings of IEEE SMC 2000, pp. 3829–3834 (2000)Google Scholar
  4. 4.
    Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)zbMATHGoogle Scholar
  5. 5.
    Majeed, H., Ryan, C.: Using context-aware crossover to improve the performance of GP. In: Proceedings of GECCO 2006, pp. 847–854 (2006)Google Scholar
  6. 6.
    Matthews, B.W.: Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim. Biophys. Acta 405, 442–451 (1975)CrossRefGoogle Scholar
  7. 7.
    Miyahara, T., Kuboyama, T.: Learning of glycan motifs using genetic programming and various fitness functions. J. Adv. Comput. Intell. Intell. Inf. (JACIII) 18(3), 401–408 (2014)Google Scholar
  8. 8.
    Nagai, S., Miyahara, T., Suzuki, Y., Uchida, T.: Acquisition of characteristic ttsp graph patterns by genetic programming. In: Proceedings of IIAI AAI 2012, pp. 340–344 (2012)Google Scholar
  9. 9.
    Nagamine, M., Miyahara, T., Kuboyama, T., Ueda, H., Takahashi, K.: A genetic programming approach to extraction of glycan motifs using tree structured patterns. In: Orgun, M.A., Thornton, J. (eds.) AI 2007. LNCS (LNAI), vol. 4830, pp. 150–159. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-76928-6_17 CrossRefGoogle Scholar
  10. 10.
    Nakai, S., Miyahara, T., Kuboyama, T., Uchida, T., Suzuki, Y.: Acquisition of characteristic tree patterns with vldc’s by genetic programming and edit distance. In: Proceedings of IIAI AAI 2013, pp. 147–151 (2013)Google Scholar
  11. 11.
    Ouchiyama, Y., Miyahara, T., Suzuki, Y., Uchida, T., Kuboyama, T., Tokuhara, F.: Acquisition of characteristic block preserving outerplanar graph patterns from positive and negative data using genetic programming and tree representation of graph patterns. In: Proceedings of IEEE IWCIA 2015, pp. 95–101 (2015)Google Scholar
  12. 12.
    Poli, R., Langdon, W., McPhee, N.: A Field Guide to Genetic Programming. Lulu Press, Raleigh (2008)Google Scholar
  13. 13.
    Rehman, S.U., Khan, A.U., Fong, S.: Graph mining: a survey of graph mining techniques. In: Proceedings of ICDIM 2012, pp. 88–92 (2012)Google Scholar
  14. 14.
    Sasaki, Y., Yamasaki, H., Shoudai, T., Uchida, T.: Mining of frequent block preserving outerplanar graph structured patterns. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.) ILP 2007. LNCS (LNAI), vol. 4894, pp. 239–253. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-78469-2_24 CrossRefGoogle Scholar
  15. 15.
    Seehuus, R., Tveit, A., Edsberg, O.: Discovering biological motifs with genetic programming. In: Proceedings of GECCO 2005, pp. 401–408 (2005)Google Scholar
  16. 16.
    Shin, K., Kuboyama, T., Hashimoto, T., Shepard, D.: Super-cwc and super-lcc: super fast feature selection. In: Proceedings of IEEE Big Data 2015, pp. 61–67 (2015)Google Scholar
  17. 17.
    Shirakawa, S., Ogino, S., Nagao, T.: Graph structured program evolution. In: Proceedings of GECCO 2007, pp. 1686–1693 (2007)Google Scholar
  18. 18.
    Tokuhara, F., Miyahara, T., Suzuki, Y., Uchida, T., Kuboyama, T.: Acquisition of characteristic block preserving outerplanar graph patterns by genetic programming using label information. In: Proceedings of IIAI AAI 2016, pp. 203–210 (2016)Google Scholar
  19. 19.
    Yamasaki, H., Sasaki, Y., Shoudai, T., Uchida, T., Suzuki, Y.: Learning block-preserving graph patterns and its application to data mining. Mach. Learn. 76, 137–173 (2009)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Fumiya Tokuhara
    • 1
    Email author
  • Tetsuhiro Miyahara
    • 1
  • Tetsuji Kuboyama
    • 2
  • Yusuke Suzuki
    • 1
  • Tomoyuki Uchida
    • 1
  1. 1.Graduate School of Information SciencesHiroshima City UniversityHiroshimaJapan
  2. 2.Computer CentreGakushuin UniversityTokyoJapan

Personalised recommendations