Mixture Seeding for Sustainable Information Spreading in Complex Networks

  • Jarosław JankowskiEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10191)


A high intensity of online advertising often elicits a negative response from web users. Marketing companies are looking for more sustainable solutions, especially in the area of visual advertising. However, the research efforts related to information spreading processes and viral marketing are focused mainly on the maximization of coverage. This paper presents a sustainable seed selection solution based on mixtures of seeds with different characteristics. The proposed solution makes it possible for the information spreading processes to reach more diverse audiences. Mixture seeding avoids overrepresentation of nodes with similar characteristics, and thus decreases campaign intensity while maintaining acceptable coverage.


Propagation Probability Online Social Network Seed Selection Sustainable Solution Infected Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was partially supported by the Polish National Science Centre, grant no. 2016/21/B/HS4/01562.


  1. 1.
    Bampo, M., Ewing, M.T., Mather, D.R., Stewart, D., Wallace, M.: The effects of the social structure of digital networks on viral marketing performance. Inf. Syst. Res. 19(3), 273–290 (2008)CrossRefGoogle Scholar
  2. 2.
    Bhagat, S., Goyal, A., Lakshmanan, L.V.: Maximizing product adoption in social networks. In: Proceedings of the Fifth ACM International Conference on Web Search and Data Mining, pp. 603–612. ACM (2012)Google Scholar
  3. 3.
    Bible network dataset – KONECT, October 2016Google Scholar
  4. 4.
    Chen, W., Wang, C., Wang, Y.: Scalable influence maximization for prevalent viral marketing in large-scale social networks. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1029–1038. ACM (2010)Google Scholar
  5. 5.
    Chen, W., Wang, Y., Yang, S.: Efficient influence maximization in social networks. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 199–208. ACM (2009)Google Scholar
  6. 6.
    Dobele, A., Toleman, D., Beverland, M.: Controlled infection! Spreading the brand message through viral marketing. Bus. Horiz. 48(2), 143–149 (2005)CrossRefGoogle Scholar
  7. 7.
    Fan, X., Li, V.O.: The probabilistic maximum coverage problem in social networks. In: Global Telecommunications Conference, 2011 IEEE, pp. 1–5 (2011)Google Scholar
  8. 8.
    Guimera, R., Danon, L., Díaz-Guilera, A., Giralt, F., Arenas, A.: Self-similar community structure in a network of human interactions. Phys. Rev. E 68(6), 065103 (2003)CrossRefGoogle Scholar
  9. 9.
    Hamsterster friendships network dataset – KONECT, October 2016Google Scholar
  10. 10.
    Hinz, O., Skiera, B., Barrot, C., Becker, J.U.: Seeding strategies for viral marketing: an empirical comparison. J. Mark. 75(6), 55–71 (2011)CrossRefGoogle Scholar
  11. 11.
    Jankowski, J., Kazienko, P., Wątróbski, J., Lewandowska, A., Ziemba, P., Zioło, M.: Fuzzy multi-objective modeling of effectiveness and user experience in online advertising. Expert Syst. Appl. 65, 315–331 (2016)CrossRefGoogle Scholar
  12. 12.
    Jankowski, J., Ziemba, P., Wątróbski, J., Kazienko, P.: Towards the tradeoff between online marketing resources exploitation and the user experience with the use of eye tracking. In: Nguyen, N.T., Trawiński, B., Fujita, H., Hong, T.-P. (eds.) ACIIDS 2016. LNCS (LNAI), vol. 9621, pp. 330–343. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-49381-6_32 CrossRefGoogle Scholar
  13. 13.
    Jankowski, J., Wątróbski, J., Witkowska, K., Wolski, W.: The use of a fuzzy cognitive maps and eye tracking in exploitation of online advertising resources. In: ICEIS, pp. 467–472 (2016)Google Scholar
  14. 14.
    Kandhway, K., Kuri, J.: How to run a campaign: optimal control of SIS and SIR information epidemics. Appl. Math. Computat. 231, 79–92 (2014)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 137–146. ACM (2003)Google Scholar
  16. 16.
    Lawson, J., Willden, C.: Mixture experiments in R using mixexp. J. Stat. Softw. Code Snippets 72(2), 1–20 (2016)Google Scholar
  17. 17.
    Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution: densification and shrinking diameters. ACM Trans. Knowl. Discovery Data (ACM TKDD) 1(1), 2 (2007)CrossRefGoogle Scholar
  18. 18.
    Michalski, R., Jankowski, J., Kazienko, P.: Negative effects of incentivised viral campaigns for activity in social networks. In: 2012 Second International Conference on Cloud and Green Computing (CGC), IEEE, pp. 391–398 (2012)Google Scholar
  19. 19.
    Michalski, R., Kajdanowicz, T., Bródka, P., Kazienko, P.: Seed selection for spread of influence in social networks: temporal vs. static approach. New Gener. Comput. 32(3–4), 213–235 (2014)CrossRefGoogle Scholar
  20. 20.
    Mislove, A., Marcon, M., Gummadi, K. P., Druschel, P., Bhattacharjee, B.: Measurement and analysis of online social networks. In: Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement, pp. 29–42. ACM (2007)Google Scholar
  21. 21.
    Newman, M.E.J.: The structure of scientific collaboration networks. Proc. Natl. Acad. Sci. U.S.A. 98, 404–409 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Piepel, G.F.: Measuring component effects in constrained mixture experi-ments. Technometrics 24(1), 29–39 (1982)CrossRefGoogle Scholar
  23. 23.
    Scheffé, H.: Experiments with Mixtures. J. Roy. Stat. Soc. B 20, 344–360 (1958)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Stonedahl, F., Rand, W., Wilensky, U.: Evolving viral marketing strategies. In: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, pp. 1195–1202. ACM (2010)Google Scholar
  25. 25.
    Trusov, M., Bucklin, R.E., Pauwels, K.: Effects of word-of-mouth versus traditional marketing: findings from an internet social networking site. J. Mark. 73(5), 90–102 (2009)CrossRefGoogle Scholar
  26. 26.
    Wang, Y., Cong, G., Song, G., Xie, K.: Community-based greedy algorithm for mining top-k influential nodes in mobile social networks. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1039–1048. ACM (2010)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.West Pomeranian University of TechnologySzczecinPoland

Personalised recommendations