An Analysis of the Centre of Mass Behavior During Treadmill Walking

  • Henryk JosińskiEmail author
  • Adam Świtoński
  • Agnieszka Michalczuk
  • Konrad Wojciechowski
  • Jerzy Paweł Nowacki
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10192)


The authors present the preliminary results of the analysis of the centre of mass behavior during treadmill walking by means of the sample entropy which quantifies a regularity of a time series. The research is focused on the centre of mass trajectories in the mediolateral, anteroposterior and longitudinal axes recorded using the motion capture technique. From among several entropy measures the sample entropy was chosen for the purpose of assessment of the influence of both walking speed and ground inclination on a regularity in movements of the centre of mass. The results were compared with the sample entropy values for periodic, chaotic and stochastic signals.


Nonlinear time series analysis Centre of mass Sample entropy Human motion analysis 



The work is supported by the following projects: the “Virtual Physiotherapist” (TANGO1/269419/NCBR/2015) of The Polish National Centre for Research and Development and BK/Rau2/2016.


  1. 1.
    Arif, M., Ohtaki, Y., Nagatomi, R., Inooka, H.: Estimation of the effect of cadence on gait stability in young and elderly people using approximate entropy technique. Meas. Sci. Rev. 4(2), 29–40 (2004)Google Scholar
  2. 2.
    Yentes, J.M., Hunt, N., Schmid, K.K., Kaipust, J.P., McGrath, D., Stergiou, N.: The appropriate use of approximate entropy and sample entropy with short data sets. Journal Articles, Paper 44 (2013).
  3. 3.
    Pincus, S.M., Goldberger, A.L.: Physiological time-series analysis: what does regularity quantify? Am. J. Physiol. - Heart Circ. Physiol. 266(4), 1643–1656 (1994)Google Scholar
  4. 4.
    Richman, J.S., Moorman, J.R.: Physiological time series analysis using approximate entropy and sample entropy. Am. J. Physiol. - Heart Circ. Physiol. 278(6), 2039–2049 (2000)Google Scholar
  5. 5.
    Georgoulis, A.D., Moraiti, C., Ristanis, S., Stergiou, N.: A novel approach to measure variability in the anterior cruciate ligament deficient knee during walking: the use of the approximate entropy in orthopaedics. J. Clin. Monit. Comput. 20, 11–18 (2006)CrossRefGoogle Scholar
  6. 6.
    Lamoth, C.J., van Deudekom, F.J., van Campen, J.P., Appels, B.A., de Vries, O.J., Pijnappels, M.: Gait stability and variability measures show effects of impaired cognition and dual tasking in frail people. J. NeuroEng. Rehabil. 8(2) (2011)Google Scholar
  7. 7.
    Jurčevič Lulič, T., Sušič, A., Kodvanj, J.: Biomechanical analysis of walking: effects of gait velocity and arm swing amplitude. Periodicum Biologorum 112(1), 13–17 (2010)Google Scholar
  8. 8.
    Decker, L.M., Cignetti, F., Stergiou, N.: Complexity and human gait. Journal Articles, Paper 91 (2010).
  9. 9.
    Costa, M., Goldberger, A.L., Peng, C.-K.: Multiscale entropy analysis of biological signals. Phys. Rev. E 71, 021906 (2005)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Piórek, M., Josiński, H., Michalczuk, A., Świtoński, A., Szczȩsna, A.: Quaternions and joint angles in an analysis of local stability of gait for different variants of walking speed and treadmill slope. Inf. Sci. (2016).
  11. 11.
    Lipsitz, L.A.: Dynamics of stability: the physiologic basis of functional health and frailty. J. Gerontol. 57, 115–125 (2002)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Henryk Josiński
    • 1
    Email author
  • Adam Świtoński
    • 1
  • Agnieszka Michalczuk
    • 2
  • Konrad Wojciechowski
    • 1
  • Jerzy Paweł Nowacki
    • 1
  1. 1.Polish-Japanese Academy of Information TechnologyWarszawaPoland
  2. 2.Institute of InformaticsSilesian University of TechnologyGliwicePoland

Personalised recommendations