Prediction of Arterial Blood Gases Values in Premature Infants with Respiratory Disorders

  • Wiesław Wajs
  • Hubert WojtowiczEmail author
  • Piotr Wais
  • Marcin Ochab
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10192)


Arterial blood gases sampling (ABG) is a method for acquiring neonatal patients’ acid-base status. Variations of blood gasometry parameters values over time can be modelled using multi-layer artificial neural networks (ANNs). Accurate predictions of future levels of blood gases can be useful in supporting therapeutic decision making. In the paper several models of ANN are trained using growing numbers of feature vectors and assessment is made about the influence of input matrix size on the accuracy of ANNs’ prediction capabilities.


Neural Network Model Base Excess Gradient Descent Algorithm Transcutaneous Carbon Dioxide Metabolism Rate Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Antoniou, A., Lu, W.: Practical Optimization: Algorithms and Engineering Applications. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  2. 2.
    Aaron, S.D., Vandemheen, K.L., Naftel, S.A., Lewis, M.J., Rodger, M.A.: Topical tetracaine prior to arterial puncture: a randomized, placebo-controlled clinical trial. Respir. Med. 97(11), 1195–1199 (2003). PMID 14635973CrossRefGoogle Scholar
  3. 3.
    Brouillette, R.T., Waxman, D.H.: Evaluation of the newborns blood gas status. Clin. Chem. 43(1), 215–221 (1997). AACCGoogle Scholar
  4. 4.
    Kelley, C.T.: Iterative Methods for Optimization. North Carolina State University/SIAM, Raleigh/Philadelphia (1999)CrossRefzbMATHGoogle Scholar
  5. 5.
    Kofstad, J.: Blood gases and hypothermia: some theoretical and practical considerations. Scand. J. Clin. Lab. Invest. 224(Suppl.), 21–26 (1996). PMID 8865418CrossRefGoogle Scholar
  6. 6.
    Levenberg, K.: A method for the solution of certain problems in least squares. Quart. Appl. Math. 2, 164–168 (1944)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Lippman, R.P.: An introduction to computing with neural nets. IEEE ASSP Mag. 4, 4–22 (1987)CrossRefGoogle Scholar
  8. 8.
    Lourakis, M.I.A.: A brief description of the Levenberg-Marquardt algorithm implemented by levmar. Technical report, Institute of Computer Science, Foundation for Research and Technology - Hellas (2005)Google Scholar
  9. 9.
    Transtrum, M.K., Machta, B.B., Sethna, J.P.: Why are nonlinear fits to data so challenging? Phys. Rev. Lett. 104, 060201 (2010)CrossRefGoogle Scholar
  10. 10.
    Marquardt, D.: An algorithm for least-squares estimation of nonlinear parameters. SIAM J. Appl. Math. 11, 431–441 (1963)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Raoufy, M.R., Eftekhari, P., Gharibzadeh, S., Masjedi, M.R.: Predicting arterial blood gas values from venous samples in patients with acute exacerbation chronic obstructive pulmonary disease using artificial neural network. J. Med. Syst. 35(4), 483–488 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Wiesław Wajs
    • 1
  • Hubert Wojtowicz
    • 1
    Email author
  • Piotr Wais
    • 2
  • Marcin Ochab
    • 3
  1. 1.The University of RzeszówRzeszówPoland
  2. 2.State Higher Vocational School in KrosnoKrosnoPoland
  3. 3.AGH University of Science and TechnologyKrakówPoland

Personalised recommendations