Modelling Respiration Induced Torso Deformation Using a Mesh Fitting Algorithm

  • Haobo Yu
  • Harvey Ho
  • Adam Bartlett
  • Peter Hunter
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10117)


Precise positioning of an ablation probe in soft abdominal organs requires taking the respiration effects into account. Fast and reliable registration of a virtual abdominal organ with intra-operational imaging data remains a challenge in image-guided and Virtual Reality (VR) aided surgeries. In this paper we present a Host Mesh Fitting (HMF) algorithm to imitate the deformation of a torso due to aspiration effects. Displacements of the torso mesh are driven by virtual fiducial markers placed on the abdominal surface, which consequently deform abdominal organs in an implicit manner and with a small computational cost. In order to test the HMF algorithm a gelatine phantom was made with its internal channels detectable from ultrasonic imaging. Deformation of the channels due to a compression force was reproduced from the warping of the host mesh. After coupling with a fiducial marker tracking system the HMF algorithm can be used to model the torso deformation due to respiration effects.


Virtual abdominal organ Host Mesh Fitting Respiration effects Fiducial markers 


  1. 1.
    Clifford, M.A., Banovac, F., Levy, E., Cleary, K.: Assessment of hepatic motion secondary to respiration for computer assisted interventions. Comput. Aided Surg. 7, 291–299 (2002)CrossRefGoogle Scholar
  2. 2.
    Schreibmann, E., Chen, G.T.Y., Xing, L.: Image interpolation in 4D CT using a BSpline deformable registration model. Int. J. Radiat. Oncol. Biol. Phys. 64, 1537–1550 (2006)CrossRefGoogle Scholar
  3. 3.
    Brandner, E.D., Wu, A., Chen, H., Heron, D., Kalnicki, S., Komanduri, K., Gerszten, K., Burton, S., Ahmed, I., Shou, Z.: Abdominal organ motion measured using 4D CT. Int. J. Radiat. Oncol. Biol. Phys. 65, 554–560 (2006)CrossRefGoogle Scholar
  4. 4.
    Atoui, H., Miguet, S., Sarrut, D.: A fast morphing-based interpolation for medical images: application to conformal radiotherapy. Image Anal. Stere. 25, 95–103 (2011)CrossRefGoogle Scholar
  5. 5.
    Fernandez, J.W., Mithraratne, P., Thrupp, S.F., Tawhai, M.H., Hunter, P.J.: Anatomically based geometric modelling of the musculo-skeletal system and other organs. Biomech. Model. Mechanobiol. 2, 139–155 (2004)CrossRefGoogle Scholar
  6. 6.
    Ho, H., Bartlett, A., Hunter, P.: Geometric modelling of patient-specific hepatic structures using cubic hermite elements. In: Yoshida, H., Sakas, G., Linguraru, M.G. (eds.) ABD-MICCAI 2011. LNCS, vol. 7029, pp. 264–271. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-28557-8_33 CrossRefGoogle Scholar
  7. 7.
    Haelterman, R., Degroote, J., Van Heule, D., Vierendeels, J.: The quasi-newton least squares method: a new and fast secant method analyzed for linear systems. SIAM J. Numer. Anal. 47, 2347–2368 (2009)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Kolr, P., Neuwirth, J., Sanda, J., Suchnek, V., Svat, Z., Volejnk, J., Pivec, M.: Analysis of diaphragm movement during tidal breathing and during its activation while breath holding using MRI synchronized with spirometry. Physiol. Res. 58, 383–392 (2009)Google Scholar
  9. 9.
    Farrer, A.I., Oden, H., de Bever, J., Coats, B., Parker, D.L., Payne, A., Christensen, D.A.: Characterization and evaluation of tissue-mimicking gelatin phantoms for use with MRgFUS. J. Ther. Ultrasound 3 (2015). doi: 10.1186/s40349-015-0030-y
  10. 10.
    Bro-Nielsen, M.: Finite element modeling in surgery simulation. Proc. IEEE 86, 490–503 (1998)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Haobo Yu
    • 1
  • Harvey Ho
    • 1
  • Adam Bartlett
    • 2
  • Peter Hunter
    • 1
  1. 1.Auckland Bioengineering InstituteThe University of AucklandAucklandNew Zealand
  2. 2.Department of SurgeryThe University of AucklandAucklandNew Zealand

Personalised recommendations