Advertisement

Cell Lineage Tree Reconstruction from Time Series of 3D Images of Zebrafish Embryogenesis

  • Robert Spir
  • Karol Mikula
  • Nadine Peyrieras
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10117)

Abstract

The paper presents numerical algorithms, postprocessing and validation steps for an automated cell tracking and cell lineage tree reconstruction from large-scale 3D+time two-photon laser scanning microscopy images of early stages of zebrafish (Danio rerio) embryo development. The cell trajectories are extracted as centered paths inside segmented spatio-temporal tree structures representing cell movements and divisions. Such paths are found by using a suitably designed and computed constrained distance functions and by a backtracking in steepest descent direction of a potential field based on these distance functions combination. Since the calculations are performed on big data, parallelization is required to speed up the processing. By careful choice and tuning of algorithm parameters we can adapt the calculations to the microscope images of vertebrae species. Then we can compare the results with ground truth data obtained by manual checking of cell links by biologists and measure the accuracy of our algorithm. Using automatic validation process and visualisation tool that can display ground truth data and our result simultaneously, along with the original 3D data, we can easily verify the correctness of the tracking.

Keywords

Gaussian Mixture Model Ground Truth Data Steep Descent Direction Cell Trajectory Nucleus Segmentation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

This work was supported by grants APVV-15-0522 and VEGA 1/0608/15.

References

  1. 1.
    Amat, F., Lemon, W., Mossing, D.P., McDole, K., Wan, Y., Branson, K., Myers, E.W., Keller, P.J.: Fast, accurate reconstruction of cell lineages from large-scale fluorescence microscopy data. Nat. Methods 11, 951–958 (2014)CrossRefGoogle Scholar
  2. 2.
    Bao, Z., et al.: Automated cell lineage tracing in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 103, 2707–2712 (2016)CrossRefGoogle Scholar
  3. 3.
    Bellaïche, Y., Bosveld, F., Graner, F., Mikula, K., Remešková, M., Smïšek, M.: New robust algorithm for tracking cells in videos of Drosophila morphogenesis based on finding an ideal path in segmented spatio-temporal cellular structures. In: Proceeding of the 33rd Annual International IEEE EMBS Conference, Boston Marriott Copley Place, Boston, MA, USA, 30 August–3 September 2011. IEEE Press (2011)Google Scholar
  4. 4.
    Bourgine, P., Čunderlík, R., Drblíková, O., Mikula, K., Peyrieras, N., Remešíková, M., Rizzi, B., Sarti, A.: 4D embryogenesis image analysis using PDE methods of image processing. Kybernetika 46, 226–259 (2010)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Bourgine, P., Frolkovič, P., Mikula, K., Peyriéras, N., Remešíková, M.: Extraction of the intercellular skeleton from 2D Images of embryogenesis using Eikonal Equation and advective subjective surface method. In: Tai, X.-C., Mørken, K., Lysaker, M., Lie, K.-A. (eds.) SSVM 2009. LNCS, vol. 5567, pp. 38–49. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-02256-2_4 CrossRefGoogle Scholar
  6. 6.
    Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22, 67–79 (1997)CrossRefzbMATHGoogle Scholar
  7. 7.
    Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. In: Proceedings International Conference on Computer Vision 1995, pp. 694–699, Boston (1995)Google Scholar
  8. 8.
    Chen, Y., Vemuri, B.C., Wang, L.: Image denoising and segmentation via nonlinear diffusion. Comput. Math. Appl. 39, 131–149 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Faure, E., Savy, T., Rizzi, B., Melani, C., Remešíkova, M., Špir, R., Drblíková, O., Čunderlík, R., Recher, G., Lombardot, B., Hammons, M., Fabrèges, D., Duloquin, L., Colin, I., Kollár, J., Desnoulez, S., Affaticati, P., Maury, B., Boyreau, A., Nief, J.Y., Calvat, P., Vernier, P., Frain, M., Lutfalla, G., Kergosien, Y., Suret, P., Doursat, R., Sarti, A., Mikula, K., Peyriéras, N., Bourgine, P.: An algorithmic workflow for the automated processing of 3d+time microscopy images of developing organisms and the reconstruction of their cell lineage. Nat. Commun. 7 (2016). Article no: 8674Google Scholar
  10. 10.
    Frolkovič, P., Mikula, K., Peyriras, N., Sarti, A.: A counting number of cells and cell segmentation using advection-diffusion equations. Kybernetika 43, 817–829 (2007)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Kausler, B.X., et al.: A discrete chain graph model for 3d+t cell tracking with high misdetection robustness. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7574, pp. 144–157. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-33712-3_11 CrossRefGoogle Scholar
  12. 12.
    Kichenassamy, S., Kumar, A., Olver, P., Tannenbaum, A., Yezzi, A.: Conformal curvature flows: from phase transitions to active vision. Arch. Ration. Mech. Anal. 134, 275–301 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Kichenassamy, S., Kumar, A., Olver, P., Tannenbaum, A., Yezzi, A.: Gradient flows and geometric active contours model. In: Proceedings of International Conference on Computer Vision 1995, Boston (1995)Google Scholar
  14. 14.
    Kriva, Z., Mikula, K., Peyriéras, N., Rizzi, B., Sarti, A., Stašová, O.: 3D early embryogenesis image filtering by nonlinear partial differential equations. Med. Image Anal. 14, 510–526 (2010)CrossRefGoogle Scholar
  15. 15.
    Mikula, K., Peyriéras, N., Remešíková, M., Sarti, A.: 3D embryogenesis image segmentation by the generalized subjective surface method using the finite volume technique. In: Eymard, R., Herard, M. (eds.) Finite Volumes for Complex Applications V, Problems and Perspectives, pp. 585–592. ISTE and Wiley, London (2008)Google Scholar
  16. 16.
    Mikula, K., Peyriéras, N., Remešíková,M., ,Smíšek, M.: 4D numerical schemes for cell image segmentation and tracking. In: Fořt, J. et al. (ed.) Finite Volumes in Complex Applications VI, Problems and Perspectives, Proceedings of the Sixth International Conference on Finite Volumes in Complex Applications, Prague, 6–10 June 2011, pp. 693–702. Springer, Heidelberg (2011)Google Scholar
  17. 17.
    Mikula, K., Peyriéras, N., Remešíková, M., Stašová, O.: Segmentation of 3D cell membrane images by PDE methods and its applications. Comput. Biol. Med. 41, 326–339 (2011)CrossRefGoogle Scholar
  18. 18.
    Mikula, K., Peyriéras, N., Špir, R.: Numerical algorithm for tracking cell dynamics in 4D biomedical images. Discrete Continuous Dyn. Syst. - Ser. S 8, 953–967 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Mikula, K., Špir, R., Smíšek, M., Faure, E., Peyriéras, N.: Nonlinear PDE based numerical methods for cell tracking in zebrafish embryogenesis. Appl. Numer. Math. 95, 250–266 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Olivier, N., Luengo-Oroz, M.A., Duloquin, L., Faure, E., Savy, T., Veilleux, I., Solinas, X., Dbarre, D., Bourgine, P., Santos, A., Peyriras, N., Beaurepaire, E.: Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy. Science 329, 967–971 (2010)CrossRefGoogle Scholar
  21. 21.
    Sarti, A., Malladi, R., Sethian, J.A.: Subjective surfaces: a method for completing missing boundaries. Proc. Natl. Acad. Sci. U.S.A. 97, 6258–6263 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. Proc. Natl. Acad. Sci. 93, 1591–1595 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Tomer, R., Khairy, K., Amat, F., Keller, P.J.: Quantitative high-speed imaging of entire developing embryos with simultaneous multiview light-sheet microscopy. Nat. Methods 9, 755–763 (2012)CrossRefGoogle Scholar
  24. 24.
    Zhao, H.: A fast sweeping method for Eikonal equations. Math. Comput. 74, 603–627 (2005)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of MathematicsSlovak University of TechnologyBratislavaSlovakia
  2. 2.Algoritmy:SK s.r.o.BratislavaSlovakia
  3. 3.Institut de Neurobiologie Alfred Fessard, CNRS UPR 3294Gif-sur-YvetteFrance

Personalised recommendations