Advertisement

Chimeric Antigen Receptor T Cells for Lymphomas: Methods, Data, and Challenges

  • Yakup Batlevi
  • Craig S. SauterEmail author
Chapter
Part of the Advances and Controversies in Hematopoietic Transplantation and Cell Therapy book series (ACHTCT)

Abstract

Antigen 16 (CD19) is an optimal target for targeted cellular therapy against all B-cell non-Hodgkin lymphomas (B-NHL)/chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL) and B-cell acute lymphoblastic leukemia (B-ALL). However, targeting CD19 can result in prolonged B-cell aplasia. Given the clinical experience with the anti-CD20 monoclonal antibody rituximab with temporary B-cell aplasia, severe clinical consequence has not been observed. Intravenous gamma globulin has proven to effectively supplement humoral immunity in hypogammaglobulinemic patients. Genetically engineered recombinant T-cell receptors directed against a specific tumor antigen (chimeric antigen receptors, CARs) can recognize and kill tumor cell targets. This review will focus on the clinical experience of targeting CD19 with CAR-modified T cells (19-CAR-T) for B-cell lymphomas, excluding CLL/SLL and multiple myeloma which are covered in other chapters of this book.

Keywords

Car T cells Lymphoma Immunotherapy CD19 

References

  1. Abate-Daga D, Hanada K, Davis JL et al (2013) Expression profiling of TCR-engineered T cells demonstrates overexpression of multiple inhibitory receptors in persisting lymphocytes. Blood 122:1399–1410CrossRefGoogle Scholar
  2. Abramson JSPM, Gordon LI, Lunning MA, Arnason JE, Wang M, Forero A, Maloney DG, Albertson T, Garcia J, Li D, Xie B, Siddiqi T (2017) High durable CR rates in relapsed/refractory (R/R) aggressive B-NHL treated with the CD19-directed CAR T cell product JCAR017 (TRANSCEND NHL 001): defined composition allows for dose-finding and definition of pivotal cohort. Blood 130(Suppl 1):581Google Scholar
  3. Barrington SF, Mikhaeel NG, Kostakoglu L et al (2014) Role of imaging in the staging and response assessment of lymphoma: consensus of the international conference on malignant lymphomas imaging working group. J Clin Oncol 32:3048–3058CrossRefGoogle Scholar
  4. Brentjens RJ, Latouche JB, Santos E et al (2003) Eradication of systemic B-cell tumors by genetically targeted human T lymphocytes co-stimulated by CD80 and interleukin-15. Nat Med 9:279–286CrossRefGoogle Scholar
  5. Brudno JN, Somerville RP, Shi V et al (2016) Allogeneic T cells that express an anti-CD19 chimeric antigen receptor induce remissions of B-cell malignancies that progress after allogeneic hematopoietic stem-cell transplantation without causing graft-versus-host disease. J Clin Oncol 34:1112–1121CrossRefGoogle Scholar
  6. Chang YJ, Huang XJ (2013) Donor lymphocyte infusions for relapse after allogeneic transplantation: when, if and for whom? Blood Rev 27:55–62CrossRefGoogle Scholar
  7. Chang LJ, Dong L, Zhu J, Ying Z, Kuo HH, Liu Y, Song YQ, Wang XP, Jia YQ, Niu T, Liu T, Pan L, Liu ZG, Li T, Li YC, Yao K, Ke X, Jing H, Bao F (2015) 4SCAR19 chimeric antigen receptor-modified T cells as a breakthrough therapy for highly chemotherapy-resistant late-stage B cell lymphoma patients with bulky tumor mass. Blood 126:264Google Scholar
  8. Chong EA, Melenhorst JJ, Svoboda J, Nasta SD, Landsburg DJ, Mato AR, Tian L, Parakandi H, Lacey SF, June CH, Schuster SJ (2017) Phase I/II study of pembrolizumab for progressive diffuse large B cell lymphoma after anti-CD19 directed chimeric antigen receptor modified T cell therapy. Blood 130(Suppl 1):4121Google Scholar
  9. Davila ML, Riviere I, Wang X et al (2014) Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med 6:224ra25CrossRefGoogle Scholar
  10. Di Stasi A, Tey SK, Dotti G et al (2011) Inducible apoptosis as a safety switch for adoptive cell therapy. N Engl J Med 365:1673–1683CrossRefGoogle Scholar
  11. Dudley ME, Yang JC, Sherry R et al (2008) Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens. J Clin Oncol 26:5233–5239CrossRefGoogle Scholar
  12. Enblad GKH, Wikstrom K, Essand M, Savoldo B, Brenner MK, Dotti G, Hallbook H, Hoglund M, Hagberg H, Loskog A (2015) Third generation CD19-CAR T cells for relapsed and refractory lymphoma and leukemia report from the Swedish phase I/IIa trial. Blood 126:1534Google Scholar
  13. Eshhar Z, Waks T, Gross G et al (1993) Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc Natl Acad Sci U S A 90:720–724CrossRefGoogle Scholar
  14. Fraietta JA, Beckwith KA, Patel PR et al (2016) Ibrutinib enhances chimeric antigen receptor T-cell engraftment and efficacy in leukemia. Blood 127:1117–1127CrossRefGoogle Scholar
  15. Fraietta JA, Lacey SF, Orlando EJ et al (2018) Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat Med 24:563–571CrossRefGoogle Scholar
  16. Fry TJ, Shah NN, Orentas RJ et al (2018) CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat Med 24:20–28CrossRefGoogle Scholar
  17. Gardner R, Wu D, Cherian S et al (2016) Acquisition of a CD19-negative myeloid phenotype allows immune escape of MLL-rearranged B-ALL from CD19 CAR-T-cell therapy. Blood 127:2406–2410CrossRefGoogle Scholar
  18. Gisselbrecht C, Glass B, Mounier N et al (2010) Salvage regimens with autologous transplantation for relapsed large B-cell lymphoma in the rituximab era. J Clin Oncol 28:4184–4190CrossRefGoogle Scholar
  19. Hill JA, Li D, Hay KA et al (2018) Infectious complications of CD19-targeted chimeric antigen receptor-modified T-cell immunotherapy. Blood 131:121–130PubMedGoogle Scholar
  20. Hombach A, Wieczarkowiecz A, Marquardt T et al (2001) Tumor-specific T cell activation by recombinant immunoreceptors: CD3 zeta signaling and CD28 costimulation are simultaneously required for efficient IL-2 secretion and can be integrated into one combined CD28/CD3 zeta signaling receptor molecule. J Immunol 167:6123–6131CrossRefGoogle Scholar
  21. Jackson HJ, Brentjens RJ (2015) Overcoming antigen escape with CAR T-cell therapy. Cancer Discov 5:1238–1240CrossRefGoogle Scholar
  22. Jensen MC, Popplewell L, Cooper LJ et al (2010) Antitransgene rejection responses contribute to attenuated persistence of adoptively transferred CD20/CD19-specific chimeric antigen receptor redirected T cells in humans. Biol Blood Marrow Transplant 16:1245–1256CrossRefGoogle Scholar
  23. Kebriaei P, Singh H, Huls MH et al (2016) Phase I trials using sleeping beauty to generate CD19-specific CAR T cells. J Clin Investig 126:3363–3376CrossRefGoogle Scholar
  24. Kloss CC, Condomines M, Cartellieri M et al (2013) Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells. Nat Biotechnol 31:71–75CrossRefGoogle Scholar
  25. Kochenderfer JN, Wilson WH, Janik JE et al (2010) Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood 116:4099–4102CrossRefGoogle Scholar
  26. Kochenderfer JN, Somerville R, Lu L et al (2014) Anti-CD19 CAR T cells administered after low-dose chemotherapy can induce remissions of chemotherapy-refractory diffuse large B-cell lymphoma. Blood 124:550Google Scholar
  27. Kochenderfer JN, Dudley ME, Kassim SH et al (2015) Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J Clin Oncol 33:540–549CrossRefGoogle Scholar
  28. Kochenderfer JN, Somerville RPT, Lu T et al (2017a) Lymphoma remissions caused by anti-CD19 chimeric antigen receptor T cells are associated with high serum interleukin-15 levels. J Clin Oncol 35:1803–1813CrossRefGoogle Scholar
  29. Kochenderfer JN, Somerville RPT, Lu T et al (2017b) Long-duration complete remissions of diffuse large B cell lymphoma after anti-CD19 chimeric antigen receptor T cell therapy. Mol Ther 25:2245–2253CrossRefGoogle Scholar
  30. Lee DW, Gardner R, Porter DL et al (2014) Current concepts in the diagnosis and management of cytokine release syndrome. Blood 124:188–195CrossRefGoogle Scholar
  31. Locke FLNS, Bartlett NL, Siddiqi T, Chavez JC, Hosing CM, Ghobadi A, Budde LE, Navale L, Aycock JS, Wiezorek J, Go WY (2015) Phase 1 clinical results of the ZUMA-1 (KTE-C19-101) study: a phase 1-2 multi-center study evaluating the safety and efficacy of anti-CD19 CAR T cells (KTE-C19) in subjects with refractory aggressive non-Hodgkin lymphoma (NHL). Blood 126:3991Google Scholar
  32. Locke FL, Neelapu S, Bartlett NL, Lekakis LJ, Jacobson CA, Braunschweig I, Oluwole OO, Siddiqi T, Lin Y, Timmerman JM, Reagan PM, Bot A, Rossi JM, Sherman M, Navale L, Jiang Y, Aycock JS, Elias M, Wiezorek JS, Go WY, Miklos DB (2017) Preliminary results of prophylactic Tocilizumab after Axicabtagene ciloleucel (axi-cel; KTE-C19) treatment for patients with refractory, aggressive non-Hodgkin lymphoma (NHL). Blood 130(Suppl 1):1547Google Scholar
  33. Long M, Beckwith K, Do P et al (2017) Ibrutinib treatment improves T cell number and function in CLL patients. J Clin Investig 127:3052–3064CrossRefGoogle Scholar
  34. Matsuki E, Younes A (2016) Checkpoint inhibitors and other immune therapies for Hodgkin and non-Hodgkin lymphoma. Curr Treat Options Oncol 17:31CrossRefGoogle Scholar
  35. Maude SL, Frey N, Shaw PA et al (2014) Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med 371:1507–1517CrossRefGoogle Scholar
  36. Neelapu SS, Locke FL, Bartlett NL et al (2017) Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med 377:2531–2544CrossRefGoogle Scholar
  37. Otahal P, Prukova D, Kral V et al (2016) Lenalidomide enhances antitumor functions of chimeric antigen receptor modified T cells. Oncoimmunology 5:e1115940CrossRefGoogle Scholar
  38. Pegram HJ, Lee JC, Hayman EG et al (2012) Tumor-targeted T cells modified to secrete IL-12 eradicate systemic tumors without need for prior conditioning. Blood 119:4133–4141CrossRefGoogle Scholar
  39. Ramos CASB, Liu E, Gee AP, Mei Z, Grilley BJ, Rooney CM, Heslop HE, Brenner MK, Dotti G (2013) Clinical responses in patients infused with T lymphocytes redirected to target κ-light immunoglobulin chain. Blood 122:506Google Scholar
  40. Ramos CA, Ballarad B, Liu E, Dakhova O, Mei Z, Liu H, Grilley B, Rooney CM, Gee AP, Chang BH, Bollard CM, Brenner MK, Dotti G, Heslop HE, Savoldo B (2015) Chimeric T cells for therapy of CD30+ Hodgkin and non-Hodgkin lymphomas. Blood 126:185CrossRefGoogle Scholar
  41. Ramsay AG, Clear AJ, Fatah R et al (2012) Multiple inhibitory ligands induce impaired T-cell immunologic synapse function in chronic lymphocytic leukemia that can be blocked with lenalidomide: establishing a reversible immune evasion mechanism in human cancer. Blood 120:1412–1421CrossRefGoogle Scholar
  42. Riddell SR, Sommermeyer D, Berger C et al (2014) Adoptive therapy with chimeric antigen receptor-modified T cells of defined subset composition. Cancer J 20:141–144CrossRefGoogle Scholar
  43. Ruella M, Kenderian SS, Shestova O et al (2016) The addition of the BTK inhibitor Ibrutinib to anti-CD19 chimeric antigen receptor T cells (CART19) improves responses against mantle cell lymphoma. Clin Cancer Res 22(11):2684–2696CrossRefGoogle Scholar
  44. Santomasso BD, Park JH, Salloum D et al (2018) Clinical and biologic correlates of neurotoxicity associated with CAR T cell therapy in patients with B-cell acute lymphoblastic leukemia (B-ALL). Cancer Discov 8(8):958–971.  https://doi.org/10.1158/2159-8290.CD-17-1319 CrossRefPubMedGoogle Scholar
  45. Sauter CS, Riviere I, Bernal Y et al (2015) Phase I trial of 19-28z chimeric antigen modified T cells (19-28z CAR-T) post-high dose therapy and autologous stem cell transplant (HDT-ASCT) for relapsed and refractory (rel/ref) aggressive B-cell non-Hodgkin lymphoma (B-NHL). J Clin Oncol 33:8515Google Scholar
  46. Schuster SJ, Svoboda J, Chong EA et al (2017a) Chimeric antigen receptor T cells in refractory B-cell lymphomas. N Engl J Med 377:2545–2554CrossRefGoogle Scholar
  47. Schuster SJ, Bishop MR, Tam CS, Waller EK, Borchmann P, McGuirk JP, Jaeger U, Jaglowski S, Andreadis C, Westin JR, Fleury I, Bachanova V, Ronan Foley S, Ho PJ, Mielke S, Magenau JM, Holte H, Van Besien K, Kersten MJ, Teshima T, Tobinai K, Corradini P, Anak O, Bubuteishvili Pacaud L, del Corral C, Awasthi R, Tai F, Salles G, Maziarz RT (2017b) Primary analysis of Juliet: a global, pivotal, phase 2 trial of CTL019 in adult patients with relapsed or refractory diffuse large B-cell lymphoma. Blood 130(Suppl 1):577Google Scholar
  48. Smith MR (2015) Ibrutinib in B lymphoid malignancies. Expert Opin Pharmacother 16:1879–1887CrossRefGoogle Scholar
  49. Till BG, Jensen MC, Wang J et al (2008) Adoptive immunotherapy for indolent non-Hodgkin lymphoma and mantle cell lymphoma using genetically modified autologous CD20-specific T cells. Blood 112:2261–2271CrossRefGoogle Scholar
  50. Turtle CJ, Hanafi LA, Berger C et al (2016) Immunotherapy of non-Hodgkin’s lymphoma with a defined ratio of CD8+ and CD4+ CD19-specific chimeric antigen receptor-modified T cells. Sci Transl Med 8:355ra116CrossRefGoogle Scholar
  51. Turtle CJ, Hay KA, Hanafi LA et al (2017) Durable molecular remissions in chronic lymphocytic leukemia treated with CD19-specific chimeric antigen receptor-modified T cells after failure of Ibrutinib. J Clin Oncol 35:3010–3020CrossRefGoogle Scholar
  52. Vose JM, Carter S, Burns LJ et al (2013) Phase III randomized study of rituximab/carmustine, etoposide, cytarabine, and melphalan (BEAM) compared with iodine-131 tositumomab/BEAM with autologous hematopoietic cell transplantation for relapsed diffuse large B-cell lymphoma: results from the BMT CTN 0401 trial. J Clin Oncol 31:1662–1668CrossRefGoogle Scholar
  53. Wang X, Popplewell LL, Wagner JR et al (2016) Phase I studies of central-memory-derived CD19 CAR T cell therapy following autologous HSCT in patients with B-cell NHL. Blood 127(24):2980–2990CrossRefGoogle Scholar
  54. Wrzesinski C, Paulos CM, Gattinoni L et al (2007) Hematopoietic stem cells promote the expansion and function of adoptively transferred antitumor CD8 T cells. J Clin Investig 117:492–501CrossRefGoogle Scholar
  55. Younes A, Bartlett NL, Leonard JP et al (2010) Brentuximab vedotin (SGN-35) for relapsed CD30-positive lymphomas. N Engl J Med 363:1812–1821CrossRefGoogle Scholar
  56. Zah E, Lin MY, Silva-Benedict A et al (2016) T cells expressing CD19/CD20 Bispecific chimeric antigen receptors prevent antigen escape by malignant B cells. Cancer Immunol Res 4(6):498–508CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Adult Bone Marrow Transplant ServiceMemorial Sloan Kettering Cancer CenterNew YorkUSA
  2. 2.Cellular Therapeutics Center, Department of MedicineMemorial Sloan Kettering Cancer CenterNew YorkUSA
  3. 3.Department of MedicineWeill Cornell Medical CollegeNew YorkUSA

Personalised recommendations