Advertisement

Why Is the Internet so Slow?!

  • Ilker Nadi Bozkurt
  • Anthony Aguirre
  • Balakrishnan Chandrasekaran
  • P. Brighten Godfrey
  • Gregory Laughlin
  • Bruce Maggs
  • Ankit Singla
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10176)

Abstract

In principle, a network can transfer data at nearly the speed of light. Today’s Internet, however, is much slower: our measurements show that latencies are typically more than one, and often more than two orders of magnitude larger than the lower bound implied by the speed of light. Closing this gap would not only add value to today’s Internet applications, but might also open the door to exciting new applications. Thus, we propose a grand challenge for the networking research community: building a speed-of-light Internet. To help inform research towards this goal, we investigate, through large-scale measurements, the causes of latency inflation in the Internet across the network stack. Our analysis reveals an under-explored problem: the Internet’s infrastructural inefficiencies. We find that while protocol overheads, which have dominated the community’s attention, are indeed important, reducing latency inflation at the lowest layers will be critical for building a speed-of-light Internet. In fact, eliminating this infrastructural latency inflation, without any other changes in the protocol stack, could speed up small object fetches by more than a factor of three.

Keywords

Active Queue Management Page Size Massive Open Online Course Median Inflation Ping Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Dhruv Diddi helped process the ESnet data. Data on fiber mileages from GÉANT, the high-speed pan-European research and education network, was obtained through personal communication with Xavier Martins-Rivas, DANTE. DANTE is the project coordinator and operator of GÉANT.

References

  1. 1.
  2. 2.
  3. 3.
  4. 4.
    Google Maps API. http://goo.gl/I4ypU
  5. 5.
  6. 6.
  7. 7.
    Top 500 sites in each country or territory, Alexa. http://goo.gl/R8HuN6
  8. 8.
    Workshop on reducing internet latency (2013). http://goo.gl/kQpBCt
  9. 9.
    Akamai: State of the Internet, Q1 (2016). https://goo.gl/XQt324
  10. 10.
    Brutlag, J.: Speed matters for Google Web search (2009). http://goo.gl/t7qGN8
  11. 11.
    Dukkipati, N., Refice, T., Cheng, Y., Chu, J., Herbert, T., Agarwal, A., Jain, A., Sutin, N.: An argument for increasing TCP’s initial congestion window. In: SIGCOMM CCR (2010)Google Scholar
  12. 12.
    Durairajan, R., Barford, P., Sommers, J., Willinger, W.: Intertubes: a study of the US long-haul fiber-optic infrastructure. In: ACM SIGCOMM (2015)Google Scholar
  13. 13.
    Schurman, E., (Bing), Brutlag, J., (Google): Performance related changes and their user impact. http://goo.gl/hAUENq
  14. 14.
    Gao, L., Wang, F.: The extent of AS path inflation by routing policies. In: GLOBECOM (2002)Google Scholar
  15. 15.
    Habib, M.A., Abrams, M.: Analysis of sources of latency in downloading web pages. In: WEBNET (2000)Google Scholar
  16. 16.
    Holterbach, T., Pelsser, C., Bush, R., Vanbever, L.: Quantifying interference between measurements on the RIPE Atlas platform (2015)Google Scholar
  17. 17.
    Grigorik, I., (Google): Latency: the new web performance bottleneck. http://goo.gl/djXp3
  18. 18.
    Liddle, J.: Amazon Found Every 100ms of Latency Cost Them 1% in Sales. http://goo.gl/BUJgV
  19. 19.
    Maynard-Koran, P.: Fixing the Internet for real time applications: Part II. http://goo.gl/46EiDC
  20. 20.
    Mühlbauer, W., Uhlig, S., Feldmann, A., Maennel, O., Quoitin, B., Fu, B.: Impact of routing parameters on route diversity and path inflation. Comput. Netw. 54(14), 2506–2518 (2010)CrossRefzbMATHGoogle Scholar
  21. 21.
    NEC: SEA-US: Global Consortium to Build Cable System Connecting Indonesia, the Philippines, and the United States. http://goo.gl/ZOV3qa
  22. 22.
    Nordrum, A.: Fiber optics for the far North [News]. IEEE Spectr. 52(1), 11–13 (2015)CrossRefGoogle Scholar
  23. 23.
    Radhakrishnan, S., Cheng, Y., Chu, J., Jain, A., Raghavan, B.: TCP fast open. In: CoNEXT (2011)Google Scholar
  24. 24.
    Rexford, J., Wang, J., Xiao, Z., Zhang, Y.: BGP routing stability of popular destinations. In: ACM SIGCOMM Workshop on Internet Measurment (2002)Google Scholar
  25. 25.
    Singla, A., Chandrasekaran, B., Godfrey, P.B., Maggs, B.: The Internet at the speed of light. In: HotNets. ACM (2014)Google Scholar
  26. 26.
    Sundaresan, S., Magharei, N., Feamster, N., Teixeira, R.: Measuring and mitigating web performance bottlenecks in broadband access networks. In: IMC (2013)Google Scholar
  27. 27.
    Täht, D.: On reducing latencies below the perceptible. In: Workshop on Reducing Internet Latency (2013)Google Scholar
  28. 28.
    Vulimiri, A., Godfrey, P.B., Mittal, R., Sherry, J., Ratnasamy, S., Shenker, S.: Low latency via redundancy. In: CoNEXT (2013)Google Scholar
  29. 29.
    Wang, X.S., Balasubramanian, A., Krishnamurthy, A., Wetherall, D.: Demystify page load performance with WProf. In: NSDI (2013)Google Scholar
  30. 30.
    Wang, Z.: Speeding up mobile browsers without infrastructure support. Master’s thesis, Duke University (2012)Google Scholar
  31. 31.
    Zhou, W., Li, Q., Caesar, M., Godfrey, P.B.: ASAP: a low-latency transport layer. In: CoNEXT (2011)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Ilker Nadi Bozkurt
    • 1
  • Anthony Aguirre
    • 4
  • Balakrishnan Chandrasekaran
    • 2
  • P. Brighten Godfrey
    • 3
  • Gregory Laughlin
    • 5
  • Bruce Maggs
    • 1
    • 6
  • Ankit Singla
    • 7
  1. 1.Duke UniversityDurhamUSA
  2. 2.TU BerlinBerlinGermany
  3. 3.UIUCChampaignUSA
  4. 4.UC Santa CruzSanta CruzUSA
  5. 5.Yale UniversityNew HavenUSA
  6. 6.AkamaiCambridgeUSA
  7. 7.ETH ZürichZürichSwitzerland

Personalised recommendations