Advertisement

Characterising Inter and Intra-Community Interactions in Link Streams Using Temporal Motifs

  • Jean CreusefondEmail author
  • Remy Cazabet
Conference paper
Part of the Springer Proceedings in Complexity book series (SPCOM)

Abstract

The analysis of dynamic networks has received a lot of attention in recent years, thanks to the greater availability of suitable datasets. One way to analyse such dataset is to study temporal motifs in link streams, i.e. sequences of links for which we can assume causality. In this article, we study the relationship between temporal motifs and communities, another important topic of complex networks. Through experiments on several real-world networks, with synthetic and ground truth community partitions, we identify motifs that are overrepresented at the frontier—or inside of—communities.

Notes

Acknowledgements

This work is funded in part by the European Commission H2020 FETPROACT 2016-2017 program under grant 732942 (ODYCCEUS), by the ANR (French National Agency of Research) under grants ANR-15-CE38-0001 (AlgoDiv) and ANR-13-CORD-0017-01 (CODDDE), by the French program “PIA—Usages, services et contenus innovants” under grant O18062-44430 (REQUEST), and by the Ile-de-France program FUI21 under grant 16010629 (iTRAC).

References

  1. 1.
    Ahn, Y.-Y., Bagrow, J.P., Lehmann, S.: Link communities reveal multiscale complexity in networks. Nature 466(7307), 761–764 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    Barabasi, A.-L.: The origin of bursts and heavy tails in human dynamics. Nature 435(7039), 207–211 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008(10), P10008 (2008)CrossRefGoogle Scholar
  4. 4.
    Cazabet, R., Amblard, F.: Dynamic community detection. In: Encyclopedia of Social Network Analysis and Mining, pp. 404–414. Springer, New York (2014)Google Scholar
  5. 5.
    De Choudhury, M., Sundaram, H., John, A., Seligmann, D.D.: Social synchrony: predicting mimicry of user actions in online social media. In: CSE’09. International Conference on Computational Science and Engineering, 2009, vol. 4, pp. 151–158. IEEE (2009)Google Scholar
  6. 6.
    Gaumont, N., Viard, T., Fournier-Sniehotta, R., Wang, Q., Latapy, M.: Analysis of the temporal and structural features of threads in a mailing-list. In: Complex Networks VII, pp. 107–118. Springer (2016)Google Scholar
  7. 7.
    Gmez, V., Kaltenbrunner, A., Lpez, V.: Statistical analysis of the social network and discussion threads in slashdot. In: Proceedings of the 17th International Conference on World Wide Web, pp. 645–654. ACM (2008)Google Scholar
  8. 8.
    Karsai, M., Kivel, M., Pan, R.K., Kaski, K., Kertsz, J., Barabsi, A.-L., Saramki,. J.: Small but slow world: how network topology and burstiness slow down spreading. Phys. Rev. E 83(2) (2011)Google Scholar
  9. 9.
    Klimt, B., Yang, Y.: Introducing the Enron Corpus. In: CEAS (2004)Google Scholar
  10. 10.
    Kovanen, L., Karsai, M., Kaski, K., Kertsz, J., Saramki, J.: Temporal motifs. In: Temporal Networks, Understanding Complex Systems. Springer, Heidelberg (2013)Google Scholar
  11. 11.
    Michalski, R., Palus, S., Kazienko, P.: Matching organizational structure and social network extracted from email communication. Business Information Systems, vol. 87, pp. 197–206. Springer, Heidelberg (2011)Google Scholar
  12. 12.
    Milo, R.: Network motifs: simple building blocks of complex networks. Science 298(5594), 824–827 (2002). OctADSCrossRefGoogle Scholar
  13. 13.
    Opsahl, T., Panzarasa, P.: Clustering in weighted networks. Soc. Netw. 31(2), 155–163 (2009). MayCrossRefGoogle Scholar
  14. 14.
    Pukelsheim, F.: The three sigma rule. Am. Stat. 48(2), 88–91 (1994)MathSciNetGoogle Scholar
  15. 15.
    Rosvall, M., Bergstrom, C.T.: Maps of random walks on complex networks reveal community structure. Proc. Natl. Acad. Sci. 105(4), 1118–1123 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    Tabourier, L., Stoica, A., Peruani, F.: How to detect causality effects on large dynamical communication networks: a case study. In: 2012 Fourth International Conference On Communication Systems and Networks (COMSNETS), pp. 1–7. IEEE (2012)Google Scholar
  17. 17.
    Viswanath, B., Mislove, A., Cha, M., Gummadi, K.P.: On the evolution of user interaction in facebook. In: Proceedings of the 2nd ACM Workshop on Online Social Networks, pp. 37–42. ACM (2009)Google Scholar
  18. 18.
    Zhang, Yi-Qing, Li, Xiang, Jian, Xu, Vasilakos, A.: Human interactive patterns in temporal networks. IEEE Trans. Syst. Man Cybern. Syst. 45(2), 214–222 (2015)CrossRefGoogle Scholar
  19. 19.
    Zhao, Q., Tian, Y., He, Q., Oliver, N., Jin, R., Lee, W.-C.: Communication motifs: a tool to characterize social communications. In: Proceedings of the 19th ACM International Conference on Information and Knowledge Management, pp. 1645–1648. ACM (2010)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.GREYC, Normandie UniversitéCaenFrance
  2. 2.Sorbonne Universites, UPMC Univ Paris 06ParisFrance

Personalised recommendations