Dynamic Colour Clustering for Skin Detection Under Different Lighting Conditions

  • Nadia Brancati
  • Giuseppe De Pietro
  • Maria Frucci
  • Luigi Gallo
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 673)


Skin detection is an important process in many applications like hand gesture recognition, face detection and ego-vision systems. This paper presents a new skin detection method based on a dynamic generation of the skin cluster range in the YCbCr color space, by taking into account the lighting conditions. The method is based on the identification of skin color clusters in the YCb and YCr subspaces. The experimental results, carried out on two publicly available databases, show that the proposed method is robust against illumination changes and achieves satisfactory results in terms of both qualitative and quantitative performance evaluation parameters.


Skin detection Dynamic clustering YCbCr colour space 


  1. 1.
    Al-Mohair, H.K., Mohamad-Saleh, J., Suandi, S.A.: Human skin color detection: a review on neural network perspective. Int. J. Innov. Comput. Inf. Control 8(12), 8115–8131 (2012)Google Scholar
  2. 2.
    Al-Mohair, H.K., Saleh, J.M., Suandi, S.A.: Hybrid human skin detection using neural network and k-means clustering technique. Appl. Soft Comput. 33, 337–347 (2015)CrossRefGoogle Scholar
  3. 3.
    Albiol, A., Torres, L., Delp, E.J.: Optimum color spaces for skin detection. In: ICIP, vol. 1, pp. 122–124 (2001)Google Scholar
  4. 4.
    Baraldi, L., Paci, F., Serra, G., Benini, L., Cucchiara, R.: Gesture recognition in ego-centric videos using dense trajectories and hand segmentation. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 702–707. IEEE (2014)Google Scholar
  5. 5.
    Basilio, J.A.M., Torres, G.A., Pérez, G.S., Medina, L.K.T., Meana, H.M.P.: Explicit image detection using YCbCr space color model as skin detection. In: Applications of Mathematics and Computer Engineering, pp. 123–128 (2011)Google Scholar
  6. 6.
    Betancourt, A.: A sequential classifier for hand detection in the framework of egocentric vision. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 600–605. IEEE (2014)Google Scholar
  7. 7.
    Brancati, N., Caggianese, G., Frucci, M., Gallo, L., Neroni, P.: Experiencing touchless interaction with augmented content on wearable head mounted displays in cultural heritage applications. Personal and Ubiquitous Computing
  8. 8.
    Brancati, N., Caggianese, G., Frucci, M., Gallo, L., Neroni, P.: Robust fingertip detection in egocentric vision under varying illumination conditions. In: 2015 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), pp. 1–6. IEEE (2015)Google Scholar
  9. 9.
    Chai, D., Ngan, K.N.: Face segmentation using skin-color map in videophone applications. IEEE Trans. Circ. Syst. Video Technol. 9(4), 551–564 (1999)CrossRefGoogle Scholar
  10. 10.
    Cheddad, A., Condell, J., Curran, K., McKevitt, P.: A skin tone detection algorithm for an adaptive approach to steganography. Sig. Process. 89(12), 2465–2478 (2009)Google Scholar
  11. 11.
    Garcia, C., Tziritas, G.: Face detection using quantized skin color regions merging and wavelet packet analysis. IEEE Trans. Multimedia 1(3), 264–277 (1999)CrossRefGoogle Scholar
  12. 12.
    Guo, J.M., Liu, Y.F., Chang, C.H., Nguyen, H.S.: Improved hand tracking system. IEEE Trans. Circ. Syst. Video Technol. 22(5), 693–701 (2012)CrossRefGoogle Scholar
  13. 13.
    Hjelmås, E., Low, B.K.: Face detection: A survey. Comput. Vis. Image Underst. 83(3), 236–274 (2001)CrossRefzbMATHGoogle Scholar
  14. 14.
    Hsu, R.L., Abdel-Mottaleb, M., Jain, A.K.: Face detection in color images. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 696–706 (2002)CrossRefGoogle Scholar
  15. 15.
    Jones, M.J., Rehg, J.M.: Statistical color models with application to skin detection. Int. J. Comput. Vision 46(1), 81–96 (2002)CrossRefzbMATHGoogle Scholar
  16. 16.
    Kawulok, M.: Fast propagation-based skin regions segmentation in color images. In: 2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG), pp. 1–7. IEEE (2013)Google Scholar
  17. 17.
    Kawulok, M., Kawulok, J., Nalepa, J.: Spatial-based skin detection using discriminative skin-presence features. Pattern Recogn. Lett. 41, 3–13 (2014)CrossRefGoogle Scholar
  18. 18.
    Khan, R., Hanbury, A., Stöttinger, J., Bais, A.: Color based skin classification. Pattern Recogn. Lett. 33(2), 157–163 (2012)CrossRefGoogle Scholar
  19. 19.
    Kovac, J., Peer, P., Solina, F.: Human Skin Color Clustering For Face Detection, vol. 2. IEEE (2003)Google Scholar
  20. 20.
    Kruppa, H., Bauer, Martin, A., Schiele, B.: Skin patch detection in real-world images. In: Gool, L. (ed.) DAGM 2002. LNCS, vol. 2449, pp. 109–116. Springer, Heidelberg (2002). doi: 10.1007/3-540-45783-6_14 CrossRefGoogle Scholar
  21. 21.
    Li, C., Kitani, K.M.: Pixel-level hand detection in ego-centric videos. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3570– 3577. IEEE (2013)Google Scholar
  22. 22.
    Luu, K., Bui, T.D., Suen, C.Y., Ricanek, K.: Spectral regression based age determination. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 103–107. IEEE (2010)Google Scholar
  23. 23.
    Nalepa, J., Grzejszczak, T., Kawulok, M.: Wrist localization in color images for hand gesture recognition. Man-Machine Interactions 3, 79–86 (2014). SpringerCrossRefGoogle Scholar
  24. 24.
    Shin, M.C., Chang, K.I., Tsap, L.V.: Does colorspace transformation make anydifference on skin detection? In: Proceedings of the Sixth IEEE Workshop on Applications of Computer Vision 2002 (WACV 2002), pp. 275–279. IEEE (2002)Google Scholar
  25. 25.
    Sobottka, K., Pitas, I.: A novel method for automatic face segmentation, facial feature extraction and tracking. Sig. Process. Image Commun. 12(3), 263–281 (1998)CrossRefGoogle Scholar
  26. 26.
    Stöttinger, J., Hanbury, A., Liensberger, C., Khan, R.: Skin paths for contextual flagging adult videos. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Kuno, Y., Wang, J., Pajarola, R., Lindstrom, P., Hinkenjann, A., Encarnação, Miguel, L., Silva, Cláudio, T., Coming, D. (eds.) ISVC 2009. LNCS, vol. 5876, pp. 303–314. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-10520-3_28 CrossRefGoogle Scholar
  27. 27.
    Tsekeridou, S., Pitas, I.: Facial feature extraction in frontal views using biometric analogies. In: 9th European Signal Processing Conference (EUSIPCO 1998), pp. 1–4. IEEE (1998)Google Scholar
  28. 28.
    Yogarajah, P., Condell, J., Curran, K., McKevitt, P., Cheddad, A.: A dynamic threshold approach for skin tone detection in colour images. Int. J. Biometrics 4(1), 38–55 (2011)CrossRefGoogle Scholar
  29. 29.
    Zaidan, A., Ahmad, N.N., Karim, H.A., Larbani, M., Zaidan, B., Sali, A.: Image skin segmentation based on multi-agent learning bayesian and neural network. Eng. Appl. Artif. Intell. 32, 136–150 (2014)CrossRefGoogle Scholar
  30. 30.
    Zhao, W., Chellappa, R., Phillips, P.J., Rosenfeld, A.: Face recognition: A literature survey. ACM Comput. Surv. (CSUR) 35(4), 399–458 (2003)CrossRefGoogle Scholar
  31. 31.
    Zhu, Y., Xu, G., Kriegman, D.J.: A real-time approach to the spotting, representation, and recognition of hand gestures for human–computer interaction. Comput. Vis. Image Underst. 85(3), 189–208 (2002)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Nadia Brancati
    • 1
  • Giuseppe De Pietro
    • 1
  • Maria Frucci
    • 1
  • Luigi Gallo
    • 1
  1. 1.Institute for High-Performance Computing and NetworkingNational Research Council (ICAR-CNR)NaplesItaly

Personalised recommendations