Nonlinear Left and Right Eigenvectors for Max-Preserving Maps

  • Björn S. RüfferEmail author
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 471)


It is shown that max-preserving maps (or join-morphisms) on the positive orthant in Euclidean n-space endowed with the component-wise partial order give rise to a semiring. This semiring admits a closure operation for maps that generate stable dynamical systems. For these monotone maps, the closure is used to define suitable notions of left and right eigenvectors that are characterized by inequalities. Some explicit examples are given and applications in the construction of Lyapunov functions are described.


Monotone systems Join-morphisms Perron-Frobenius theory Positive eigenvectors Small-gain condition Lyapunov functions 


  1. 1.
    Birkoff, G.: Lattice Theory, 3rd edn. American Mathematical Society (1973)Google Scholar
  2. 2.
    Dirr, G., Ito, H., Rantzer, A., Rüffer, B.S.: Separable Lyapunov functions: constructions and limitations. Discrete Contin. Dyn. Syst. Ser. B 20(8), 2497–2526 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Frobenius, G.: Über Matrizen aus positiven Elementen. Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften, pp. 471–476 (1908)Google Scholar
  4. 4.
    Frobenius, G.: Über Matrizen aus positiven Elementen. ii. Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften, vol. 1909, pp. 514–518 (1909)Google Scholar
  5. 5.
    Frobenius, G.: Über Matrizen aus nicht negativen Elementen. Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften, pp. 456–477 (1912)Google Scholar
  6. 6.
    Ito, H., Jiang, Z.P., Dashkovskiy, S., Rüffer, B.S.: Robust stability of networks of iISS systems: construction of sum-type Lyapunov functions. IEEE Trans. Autom. Control 58(5), 1192–1207 (2013)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Karafyllis, I., Jiang, Z.P.: A vector small-gain theorem for general non-linear control systems. IMA J. Math. Control Inf. 28(3), 309–344 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Lemmens, B., Nussbaum, R.: Nonlinear Perron-Frobenius Theory. Cambridge Tracts in Mathematics, vol. 189. Cambridge University Press, Cambridge (2012)Google Scholar
  9. 9.
    Perron, O.: Grundlagen für eine Theorie des Jacobischen Kettenbruchalgorithmus. Math. Ann. 64(1), 1–76 (1907)Google Scholar
  10. 10.
    Perron, O.: Zur Theorie der Matrices. Math. Ann. 64(2), 248–263 (1907)Google Scholar
  11. 11.
    Rüffer, B.S.: Monotone inequalities, dynamical systems, and paths in the positive orthant of Euclidean \(n\)-space. Positivity 14(2), 257–283 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Rüffer, B.S., Ito, H.: Sum-separable Lyapunov functions for networks of ISS systems: a gain function approach. In: Proceedings of the 54th IEEE Conference on Decision Control, pp. 1823–1828 (2015)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Mathematical and Physical SciencesThe University of Newcastle (UON)CallaghanAustralia

Personalised recommendations