Advertisement

Analysis and Practical Minimization of Registration Error in a Spherical Fish Tank Virtual Reality System

  • Qian ZhouEmail author
  • Gregor Miller
  • Kai Wu
  • Ian Stavness
  • Sidney Fels
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10114)

Abstract

We describe the design, implementation and detailed visual error analysis of a 3D perspective-corrected spherical display that uses calibrated, multiple rear projected pico-projectors. The display system is calibrated via 3D reconstruction using a single inexpensive camera, which enables both view-independent and view-dependent applications, also known as, Fish Tank Virtual Reality (FTVR). We perform error analysis of the system in terms of display calibration error and head-tracking error using a mathematical model. We found: head tracking error causes significantly more eye angular error than display calibration error; angular error becomes more sensitive to tracking error when the viewer moves closer to the sphere; and angular error is sensitive to the distance between the virtual object and its corresponding pixel on the surface. Taken together, these results provide practical guidelines for building a spherical FTVR display and can be applied to other configurations of geometric displays.

Notes

Acknowledgement

We thank B-Con Engineering, NVIDIA and NSERC Canada for providing financial and in-kind support and Dr. Marcelo Zuffo and his group at University of Sao Paulo for helpful discussions.

Supplementary material

Supplementary material 1 (mp4 21885 KB)

References

  1. 1.
    Favalora, G.E.: Volumetric 3d displays and application infrastructure. Computer 38, 37–44 (2005)CrossRefGoogle Scholar
  2. 2.
    Downing, E., Hesselink, L., Ralston, J., Macfarlane, R.: A three-color, solid-state, three-dimensional display. Science 273, 1185 (1996)CrossRefGoogle Scholar
  3. 3.
    Blundell, B.G., Schwarz, A.J.: Volumetric Three-Dimensional Display Systems, 1st edn., p. 330. Wiley-VCH, March 2000. ISBN: 0-471-23928-3Google Scholar
  4. 4.
    Teubl, F., Kurashima, C.S., Cabral, M., Lopes, R.D., Anacleto, J.C., Zuffo, M.K., Fels, S.: Spheree: an interactive perspective-corrected spherical 3d display. In: 3DTV-Conference: The True Vision-Capture, Transmission and Display of 3D Video (3DTV-CON), pp. 1–4. IEEE (2014)Google Scholar
  5. 5.
    Arthur, K.W., Booth, K.S., Ware, C.: Evaluating 3d task performance for fish tank virtual worlds. ACM Trans. Inf. Syst. (TOIS) 11, 239–265 (1993)CrossRefGoogle Scholar
  6. 6.
    Cruz-Neira, C., Sandin, D.J., DeFanti, T.A.: Surround-screen projection-based virtual reality: the design and implementation of the cave. In: Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques, pp. 135–142. ACM (1993)Google Scholar
  7. 7.
    Stavness, I., Lam, B., Fels, S.: pCubee: a perspective-corrected handheld cubic display. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1381–1390. ACM (2010)Google Scholar
  8. 8.
    Lam, B., Tang, Y., Stavness, I., Fels, S.: A 3d cubic puzzle in pcubee. In: 2011 IEEE Symposium on 3D User Interfaces (3DUI), pp. 135–136. IEEE (2011)Google Scholar
  9. 9.
    Benko, H., Wilson, A.D., Balakrishnan, R.: Sphere: multi-touch interactions on a spherical display. In: Proceedings of the 21st Annual ACM Symposium on User Interface Software and Technology, pp. 77–86. ACM (2008)Google Scholar
  10. 10.
    Bolton, J., Kim, K., Vertegaal, R.: Snowglobe: a spherical fish-tank vr display. In: CHI 2011 Extended Abstracts on Human Factors in Computing Systems, pp. 1159–1164. ACM (2011)Google Scholar
  11. 11.
    Raskar, R.: Immersive planar display using roughly aligned projectors. In: Proceedings of the Virtual Reality, pp. 109–115. IEEE (2000)Google Scholar
  12. 12.
    Raij, A., Gill, G., Majumder, A., Towles, H., Fuchs, H.: Pixelflex2: a comprehensive, automatic, casually-aligned multi-projector display. In: IEEE International Workshop on Projector-Camera Systems, Nice, France, pp. 203–211 (2003)Google Scholar
  13. 13.
    Raskar, R., Brown, M.S., Yang, R., Chen, W.C., Welch, G., Towles, H., Scales, B., Fuchs, H.: Multi-projector displays using camera-based registration. In: Proceedings of the Visualization 1999, pp. 161–522. IEEE (1999)Google Scholar
  14. 14.
    Van Baar, J., Willwacher, T., Rao, S., Raskar, R.: Seamless multi-projector display on curved screens. In: Proceedings of the Workshop on Virtual Environments, pp. 281–286. ACM (2003)Google Scholar
  15. 15.
    Harville, M., Culbertson, B., Sobel, I., Gelb, D., Fitzhugh, A., Tanguay, D.: Practical methods for geometric and photometric correction of tiled projector. In: Conference on Computer Vision and Pattern Recognition Workshop, CVPRW 2006, p. 5. IEEE (2006)Google Scholar
  16. 16.
    Sajadi, B., Majumder, A.: Automatic registration of multi-projector domes using a single uncalibrated camera. In: Computer Graphics Forum, vol. 30, pp. 1161–1170. Wiley Online Library (2011)Google Scholar
  17. 17.
    Sajadi, B., Majumder, A.: Autocalibration of multiprojector cave-like immersive environments. IEEE Trans. Vis. Comput. Graph. 18, 381–393 (2012)CrossRefGoogle Scholar
  18. 18.
    Azuma, R., Bishop, G.: Improving static and dynamic registration in an optical see-through hmd. In: Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques, pp. 197–204. ACM (1994)Google Scholar
  19. 19.
    Holloway, R.L.: Registration error analysis for augmented reality. Presence Teleoperators Virtual Environ. 6, 413–432 (1997)CrossRefGoogle Scholar
  20. 20.
    You, S., Neumann, U., Azuma, R.: Orientation tracking for outdoor augmented reality registration. IEEE Comput. Graph. Appl. 19, 36–42 (1999)CrossRefGoogle Scholar
  21. 21.
    MacIntyre, B., Coelho, E.M., Julier, S.J.: Estimating and adapting to registration errors in augmented reality systems. In: Proceedings of the Virtual Reality, pp. 73–80. IEEE (2002)Google Scholar
  22. 22.
    Falcao, G., Hurtos, N., Massich, J.: Plane-based calibration of a projector-camera system. VIBOT Master 9, 1–12 (2008)Google Scholar
  23. 23.
    Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22, 1330–1334 (2000)CrossRefGoogle Scholar
  24. 24.
    Forbes, A.B.: Least-squares best-fit geometric elements. National Physical Laboratory Teddington (1989)Google Scholar
  25. 25.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  26. 26.
    Xu, X., McGorry, R.W.: The validity of the first and second generation microsoft kinect for identifying joint center locations during static postures. Appl. Ergon. 49, 47–54 (2015)CrossRefGoogle Scholar
  27. 27.
    Polhemus, F.: 3space Fastrak Users Manual. F. Polhemus Inc., Colchester (1993)Google Scholar
  28. 28.
    Chen, H., Sukthankar, R., Wallace, G., Li, K.: Scalable alignment of large-format multi-projector displays using camera homography trees. In: Proceedings of the Conference on Visualization 2002, pp. 339–346. IEEE Computer Society (2002)Google Scholar
  29. 29.
    Strang, G.: Introduction to Applied Mathematics. Wellesley-Cambridge (1986)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Qian Zhou
    • 1
    Email author
  • Gregor Miller
    • 1
  • Kai Wu
    • 1
  • Ian Stavness
    • 2
  • Sidney Fels
    • 1
  1. 1.Electrical and Computer EngineeringUniversity of British ColumbiaVancouverCanada
  2. 2.Department of Computer ScienceUniversity of SaskatchewanSaskatoonCanada

Personalised recommendations