Simultaneous Independent Image Display Technique on Multiple 3D Objects

  • Takuto Hirukawa
  • Marco Visentini-Scarzanella
  • Hiroshi Kawasaki
  • Ryo FurukawaEmail author
  • Shinsaku Hiura
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10114)


We propose a new system to visualize depth-dependent patterns and images on solid objects with complex geometry using multiple projectors. The system, despite consisting of conventional passive LCD projectors, is able to project different images and patterns depending on the spatial location of the object. The technique is based on the simple principle that multiple patterns projected from multiple projectors interfere constructively with each other when their patterns are projected on the same object. Previous techniques based on the same principle can only achieve (1) low resolution volume colorization or (2) high resolution images but only on a limited number of flat planes. In this paper, we discretize a 3D object into a number of 3D points so that high resolution images can be projected onto the complex shapes. We also propose a dynamic ranges expansion technique as well as an efficient optimization procedure based on epipolar constraints. Such technique can be used to the extend projection mapping to have spatial dependency, which is desirable for practical applications. We also demonstrate the system potential as a visual instructor for object placement and assembling. Experiments prove the effectiveness of our method.


Linear Factorization Epipolar Line Multiple Projector Epipolar Geometry Blur Kernel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

416263_1_En_27_MOESM1_ESM.mp4 (4.7 mb)
Supplementary material 1 (mp4 4805 KB)


  1. 1.
    Bimber, O., Raskar, R.: Spatial Augmented Reality: Merging Real and Virtual Worlds. A. K. Peters Ltd., Natick (2005)CrossRefGoogle Scholar
  2. 2.
    Barnum, P.C., Narasimhan, S.G., Kanade, T.: A multi-layered display with water drops. ACM Trans. Graph. (TOG) 29(4), 76 (2010)CrossRefGoogle Scholar
  3. 3.
    Jurik, J., Jones, A., Bolas, M., Debevec, P.: Prototyping a light field display involving direct observation of a video projector array. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 15–20 (2011)Google Scholar
  4. 4.
    Nagano, K., Jones, A., Liu, J., Busch, J., Yu, X., Bolas, M., Debevec, P.: An autostereoscopic projector array optimized for 3d facial display. In: ACM SIGGRAPH 2013 Emerging Technologies (SIGGRAPH 2013), p. 3:1 (2013)Google Scholar
  5. 5.
    Hirsch, M., Wetzstein, G., Raskar, R.: A compressive light field projection system. ACM Trans. Graph. (TOG) 33(4), 58 (2014)CrossRefGoogle Scholar
  6. 6.
    Visentini-Scarzanella, M., Hirukawa, T., Kawasaki, H., Furukawa, R., Hiura, S.: A two plane volumetric display for simultaneous independent images at multiple depths. In: PSIVT Workshop Vision meets Graphics, pp. 1–8 (2015)Google Scholar
  7. 7.
    Cruz-Neira, C., Sandin, D.J., DeFanti, T.A.: Surround-screen projection-based virtual reality: the design and implementation of the cave. In: Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques, pp. 135–142. ACM (1993)Google Scholar
  8. 8.
    Raskar, R., Welch, G., Fuchs, H.: Seamless projection overlaps using image warping and intensity blending. In: Fourth International Conference on Virtual Systems and Multimedia, Gifu, Japan (1998)Google Scholar
  9. 9.
    Yang, R., Gotz, D., Hensley, J., Towles, H., Brown, M.S.: Pixelflex: a reconfigurable multi-projector display system. In: Proceedings of the Conference on Visualization 2001, pp. 167–174. IEEE Computer Society (2001)Google Scholar
  10. 10.
    Chen, Y., Clark, D.W., Finkelstein, A., Housel, T.C., Li, K.: Automatic alignment of high-resolution multi-projector display using an un-calibrated camera. In: Proceedings of the Conference on Visualization 2000, pp. 125–130. IEEE Computer Society Press (2000)Google Scholar
  11. 11.
    Schikore, D.R., Fischer, R.A., Frank, R., Gaunt, R., Hobson, J., Whitlock, B.: High-resolution multiprojector display walls. IEEE Comput. Graph. Appl. 20(4), 38–44 (2000)CrossRefGoogle Scholar
  12. 12.
    Godin, G., Massicotte, P., Borgeat, L.: High-resolution insets in projector-based display: principle and techniques. In: SPIE Proceedings: Stereoscopic Displays and Virtual Reality Systems XIII, vol. 6055 (2006)Google Scholar
  13. 13.
    Bimber, O., Emmerling, A.: Multifocal projection: a multiprojector technique for increasing focal depth. IEEE Trans. Vis. Comput. Graph. 12(4), 658–667 (2006)CrossRefGoogle Scholar
  14. 14.
    Nagase, M., Iwai, D., Sato, K.: Dynamic defocus and occlusion compensation of projected imagery by model-based optimal projector selection in multi-projection environment. Virtual Reality 15(2–3), 119–132 (2011)CrossRefGoogle Scholar
  15. 15.
    Levoy, M., Chen, B., Vaish, V., Horowitz, M., McDowall, I., Bolas, M.: Synthetic aperture confocal imaging. ACM Trans. Graph. (TOG) 23, 825–834 (2004)CrossRefGoogle Scholar
  16. 16.
    Kagami, S.: Range-finding projectors: visualizing range information without sensors. In: IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp. 239–240 (2010)Google Scholar
  17. 17.
    Nakamura, R., Sakaue, F., Sato, J.: Emphasizing 3D structure visually using coded projection from multiple projectors. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010. LNCS, vol. 6493, pp. 109–122. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-19309-5_9 CrossRefGoogle Scholar
  18. 18.
    Wetzstein, G., Lanman, D., Hirsch, M., Raskar, R.: Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting. ACM Trans. Graph. (Proc. SIGGRAPH) 31(4), 1–11 (2012)Google Scholar
  19. 19.
    Sato, K., Inokuchi, S.: Three-dimensional surface measurement by space encoding range imaging. J. Robot. Syst. 2, 27–39 (1985)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Takuto Hirukawa
    • 1
  • Marco Visentini-Scarzanella
    • 1
  • Hiroshi Kawasaki
    • 1
  • Ryo Furukawa
    • 2
    Email author
  • Shinsaku Hiura
    • 2
  1. 1.Computer Vision and Graphics LaboratoryKagoshima UniversityKagoshimaJapan
  2. 2.Graduate School of Information SciencesHiroshima City UniversityHiroshimaJapan

Personalised recommendations