Neutral Neighbors in Bi-objective Optimization: Distribution of the Most Promising for Permutation Problems

  • Marie-Eléonore Kessaci-MarmionEmail author
  • Clarisse Dhaenens
  • Jérémie Humeau
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10173)


In multi-objective optimization approaches, considering neutral neighbors during the exploration has already proved its efficiency. The aim of this article is to go further in the comprehensibility of neutrality. In particular, we propose a definition of most promising neutral neighbors and study in details their distribution within neutral neighbors. As the correlation between objectives has an important impact on neighbors distribution, it will be studied. Three permutation problems are used as case studies and conclusions about neutrality encountered in these problems are provided.


Neutrality Multi-objective optimization Epsilon-indicator Neighborhood Fitness landscape 


  1. 1.
    Blot, A., Aguirre, H., Dhaenens, C., Jourdan, L., Marmion, M.-E., Tanaka, K.: Neutral but a winner! How neutrality helps multiobjective local search algorithms. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9018, pp. 34–47. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-15934-8_3 Google Scholar
  2. 2.
    Croes, G.A.: A method for solving traveling-salesman problems. Oper. Res. 6, 791–812 (1958)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Galván-López, E., Poli, R., Kattan, A., O’Neill, M., Brabazon, A.: Neutrality in evolutionary algorithms. What do we know? Evol. Syst. 2(3), 145–163 (2011)CrossRefGoogle Scholar
  4. 4.
    Knowles, J., Corne, D.: Instance generators and test suites for the multiobjective quadratic assignment problem. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Thiele, L., Deb, K. (eds.) EMO 2003. LNCS, vol. 2632, pp. 295–310. Springer, Heidelberg (2003). doi: 10.1007/3-540-36970-8_21 CrossRefGoogle Scholar
  5. 5.
    Marmion, M.-E., Aguirre, H., Dhaenens, C., Jourdan, L., Tanaka, K.: Multi-objective neutral neighbors’: what could be the definition (s)? In: GECCO 2016, pp. 349–356. ACM (2016)Google Scholar
  6. 6.
    Marmion, M.-E., Dhaenens, C., Jourdan, L., Liefooghe, A., Verel, S.: Nils: a neutrality-based iterated local search and its application to flowshop scheduling. In: EvoCOP, pp. 191–202 (2011)Google Scholar
  7. 7.
    Taillard, E.: Benchmarks for basic scheduling problems. Eur. J. Oper. Res. 64(2), 278–285 (1993)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Marie-Eléonore Kessaci-Marmion
    • 1
    Email author
  • Clarisse Dhaenens
    • 1
  • Jérémie Humeau
    • 2
    • 3
  1. 1.Univ. Lille, CNRS, Centrale Lille, UMR 9189 - CRIStALLilleFrance
  2. 2.Univ. LilleLilleFrance
  3. 3.Mines Douai, URIADouaiFrance

Personalised recommendations