Skip to main content

Abstract

Obesity is a global health problem affecting all age groups, leading to many complications such as type 2 diabetes, systemic hypertension, cardiovascular diseases, dyslipidemia, atherosclerosis, and stroke. Physiologically, obesity which arises from metabolic changes at tissue and organ levels results in an imbalance between energy intake and energy expenditure, which in turn results in increased fat accumulation in adipose tissue. Adipose tissue is an important endocrine organ, which secretes several hormones, including leptin and adiponectin and chemokines. These factors can regulate tumor behavior, inflammation, and the tumor microenvironment. Excessive adipose expansion during obesity causes adipose dysfunction and inflammation to increase systemic levels of pro-inflammatory factors. Cells from adipose tissue, such as cancer-associated adipocytes and adipose-derived stem cells, enter the cancer microenvironment to enhance pro-tumor effects. Dysregulated metabolism that stems from obesity including insulin resistance, hyperglycemia, and dyslipidemia can further affect tumor growth and development. Two different obesity treatment drugs are currently on the market: orlistat, which reduces intestinal fat absorption via inhibiting pancreatic lipase, and sibutramine, an anorectic or appetite suppressant. Both drugs have side effects, including increased blood pressure, dry mouth, constipation, headache, and insomnia. For this reason, a wide variety of natural materials has been explored for their obesity treatment potential. The present chapter focuses on the safety and efficacy of commonly used herbal medicines in the management of obesity through covering their beneficial effects and mechanism of action.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Padwal R, Li SK, Lau DCW (2003) Long-term pharmacotherapy for overweight and obesity: a systematic review and meta-analysis of randomized controlled trials. Int J Obes 27:1437–1446

    Article  CAS  Google Scholar 

  2. Billington CJ, Epstein LH, Goodwin NJ et al (2000) Overweight, obesity, and health risk. Arch Intern Med 160:898–904

    Article  Google Scholar 

  3. Atkinson RL (2014) Current status of the field of obesity. Trends Endocrinol Metab 25:283–284

    Article  CAS  Google Scholar 

  4. Said O, Khalil K, Fulder S, Marie Y, Kassis E, Saad B (2009) A double blinded- randomized clinical study with “weighlevel”, a combination of four medicinal plants used in traditional Greco-Arab and Islamic medicine. Open Complement Med J 1:100–115

    Google Scholar 

  5. Kadan S, Saad B, Sasson Y, Zaid H (2015) Cytotoxic, antidiabetic and chemical composition and of Ocimum basilicum, 196. 1:1066–1074

    Google Scholar 

  6. Saad B, Zaid H, Said O (2013) Tradition and perspectives of diabetes treatment in Greco-Arab and islamic medicine. In: Watson RR, Preedy VR (eds) Bioactive food as dietary interventions for diabetes. Academic Press, San Diego, pp 319–326

    Chapter  Google Scholar 

  7. Zaid H, Saad B (2013) State of the art of diabetes treatment in Greco-Arab and islamic medicine. In: Watson RR, Preedy VR (eds) Bioactive food as dietary interventions for diabetes. Academic Press, San Diego, pp 327–337

    Chapter  Google Scholar 

  8. Badran M, Laher I (2011) Obesity in arabic-speaking countries. J Obesity ID 2011:686430. doi:10.1155/2011/686430

    Google Scholar 

  9. Hossain P, Kawar B, El-Nahas M (2007) Obesity and diabetes in the developing world, a growing challenge. J N Engl Med 356:213–215

    Article  CAS  Google Scholar 

  10. Ferraro KF, Su Y, Gretebeck RJ, Black DR, Badylak SF (2002) Body mass index and disability in adulthood: a 20-year panel study. Am J Public Health 92:834–840

    Article  Google Scholar 

  11. Rayalam S, Della-Fera MN, Baile CA (2008) Phytochemicals and regulation of the adipocyte life cycle. J Nutr Biochem 19:717–726

    Article  CAS  Google Scholar 

  12. Said O, Saad B, Fulder F, Khalil K, Kassis E (2008) Weight loss in animals and humans treated with ‘weighlevel’, a combination of four medicinal plants used in traditional arabic and islamic medicine. eCAM 2008. doi:10.1093/ecam/nen067

  13. Mohamed GA, Ibrahim SR, Elkhayat ES, Salah El Dine RS (2014) Natural anti-obesity agents. Bulletin of Faculty of Pharmacy Cairo University 52:269–284

    Article  Google Scholar 

  14. Saad B, Azaizeh H, Said O (2005) Tradition and perspectives of Arab herbal medicine: a review. eCAM 2:475–479

    Google Scholar 

  15. Seyedan A, Alshawsh MA, Alshagga MA, Koosha S, Mohamed Z (2015) Medicinal plants and their inhibitory activities against pancreatic lipase: a review. eCAM 2015, Article ID 973143, 13 pages. http://dx.doi.org/10.1155/2015/973143

  16. Chantre P, Lairon D (2002) Recent findings of green tea extract AR25 (exolise) and its activity for the treatment of obesity. Phytomedicine 9:3–8

    Article  CAS  Google Scholar 

  17. Atkinson TJ (2008) Central and peripheral neuroendocrine peptides and signalling in appetite regulation: considerations for obesity pharmacotherapy. Obes Rev 9:108–120

    Article  CAS  Google Scholar 

  18. Naslund E, Hellstrom PM (2007) Appetite signaling: from gut peptides and enteric nerves to brain. Physiol Behav 92:256–262

    Article  Google Scholar 

  19. Murphy KG, Bloom SR (2006) Gut hormones and the regulation of energy homeostasis. Nature 444:854–859

    Article  CAS  Google Scholar 

  20. Lairon D, Lafont H, Vigne JL, Nalbone G, Leonardi J, Hauton JC (1985) Effect of dietary fibers and cholestyramine on the activity of pancreatic lipase in vitro. Am J Clin Nutr 42:629–638

    CAS  Google Scholar 

  21. Yang CS, Zhang J, Zhang L, Huang J, Wang Y (2016) Mechanisms of body weight reduction and metabolic syndrome alleviation by tea. Mol Nutr Food Res 60:160–174

    Article  CAS  Google Scholar 

  22. Van Heerden FR (2008) Hoodia gordonii: a natural appetite suppressant. J Ethnopharmacol 119:434–437

    Article  CAS  Google Scholar 

  23. Vermaak I, Hamman JH, Viljoen AM (2011) Hoodia gordonii: an up-to-date review of a commercially important anti-obesity plant. Planta Med 77:1149–1160

    Article  CAS  Google Scholar 

  24. Sahib NG, Saari N, Ismail A, Khatib A, Mahomoodally F, Abdul Hamid A (2012) Plants’ metabolites as potential antiobesity agents. Scientific World J. Article ID 436039. doi:10.1100/2012/436039

  25. Kuriyan R, Raj T, Srinivas SK, Vaz M, Rajendran R, Kurpad AV (2001) Effect of Caralluma fimbriata extract on appetite, food intake and anthropometry in adult men and women. Appetite 48:338–344

    Article  Google Scholar 

  26. Murray CDR, Le Roux CW, Emmanuel AV et al (2008) The effect of khat (Catha edulis) as an appetite suppressant is independent of ghrelin and PYY secretion. Appetite 51:747–750

    Article  CAS  Google Scholar 

  27. Ohio SE, Awe SO, LeDay AM, Opere CA, Bagchi D (2001) Effect of hydroxycitric acid on serotonin release from isolated rat brain cortex. Res Commun Mol Pathol Pharmacol 109:210–216

    Google Scholar 

  28. Abdel-Sattar E, El Zalabani SM, Salama MM (2014) Herbal and microbial products for the management of obesity. Anti-Obesity Drug Discovery and Development 2:130–210

    CAS  Google Scholar 

  29. Celleno L, Tolaini MV, D’Amore A, Perricone NV, Preuss HG (2007) A dietary supplement containing standardized Phaseolus vulgaris extract influences body composition of overweight men and women. Int J Med Sci 24:45–52

    Article  Google Scholar 

  30. Bo-Linn GW, Santa-Ana CA, Morawski SG, Fordtran JS (1982) Starch blockers-their effect on calorie absorption from a high-starch meal. N Engl J Med 307:1413–1436

    Article  CAS  Google Scholar 

  31. Birari RB, Bhutani KK (2007) Pancreatic lipase inhibitors from natural sources: unexplored potential. Drug Discov Today 12:879–889

    Article  CAS  Google Scholar 

  32. Lunagariya NA, Patel NK, Jagtap SC, Bhutani KK (2014) Inhibitors of pancreatic lipase: state of the art and clinical perspectives. EXCLI J 13:897–921

    Google Scholar 

  33. Tsujita T, Matsuura Y, Okuda H (1996) Studies on the inhibition of pancreatic and carboxylester lipases by protamine. J Lipid Res 37:1481–1487

    CAS  Google Scholar 

  34. Tsujita T, Takaichi H, Takaku T, Aoyama S, Hiraki J (2006) Antiobesity action of ε-polylysine, a potent inhibitor of pancreatic lipase. J Lipid Res 47:1852–1858

    Article  CAS  Google Scholar 

  35. Sumiyoshi M, Kimura Y (2006) Low molecular weight chitosan inhibits obesity induced by feeding a high-fat diet long-term in mice. J Pharm Pharmacol 58:201–207

    Article  CAS  Google Scholar 

  36. Marrelli M, Loizzo MR, Nicoletti M, Menichini F, Conforti F (2013) Inhibition of key enzymes linked to obesity by preparations from Mediterranean dietary plants: effects on α-amylase and pancreatic lipase activities. Plant Foods Hum Nutr 68:340–346

    Article  CAS  Google Scholar 

  37. Ado MA, Abas F, Mohammed AS, Ghazali HM (2013) Anti and pro-lipase activity of selected medicinal, herbal and aquatic plants, and structure elucidation of an anti-lipase compound. Molecules 18:14651–14669

    Article  CAS  Google Scholar 

  38. Adisakwattana S, Intrawangso J, Hemrid A, Chanathong B, Makynen K (2012) Extracts of edible plants inhibit pancreatic lipase, cholesterol esterase and cholesterol micellization, and bind bile acids. Food Technol Biotechnol 50:11–16

    CAS  Google Scholar 

  39. Kim YS, Lee Y, Kim J, et al. (2012) Inhibitory activities of Cudrania tricuspidata leaves on pancreatic lipase in vitro and lipolysis in vivo. eCAM. Article ID 878365

    Google Scholar 

  40. Lai HY, Ong SL, Rao NK (2014) In vitro lipase inhibitory effect of thirty two selected plants in Malaysia. Asian J Pharm Clin Res 7:100–110

    Google Scholar 

  41. Conforti F, Perri V, Menichini F et al (2012) Wild mediterranean dietary plants as inhibitors of pancreatic lipase. Phytother Res 26:600–604

    Article  CAS  Google Scholar 

  42. Morton G, Cummings DE, Baskin DG, Barsh GS, Schwatz MW (2006) Central nervous system control of food intake and body weight. Nature 443:289–295

    Article  CAS  Google Scholar 

  43. Gregoire FM, Smas CM, Sul HS (1998) Understanding adipocyte differentiation. Physiol Rev 78:783–809

    CAS  Google Scholar 

  44. Xxxx

    Google Scholar 

  45. Xxxx

    Google Scholar 

  46. Xxxx

    Google Scholar 

  47. Xxxx

    Google Scholar 

  48. Anderson JW, Baird P, Davis RH Jr, Ferreri S, Knudtson M, Koraym A, Waters V, Williams CL (2009) Nutrition reviews health benefits of dietary fiber. Nutr Rev 67:188–205

    Article  Google Scholar 

  49. Liu S, Stampfer MJ, Hu FB et al (1999) Whole-grain consumption and risk of coronary heart disease: results from the Nurses’ Health study. Am J Clin Nutr 70:412–419

    CAS  Google Scholar 

  50. Whelton SP, Hyre AD, Pedersen B, Yi Y, Whelton PK, He J (2005) Effect of dietary fiber intake on blood pressure: a meta-analysis of randomized, controlled clinical trials. J Hypertens 23:475–481

    Article  CAS  Google Scholar 

  51. Sueoka N, Suganuma M, Sueoka E, Okabe S, Matsuyama S, Imai K (2001) A new function of green tea: prevention of lifestyle-related diseases. Ann N Y Acad Sci 928:274–280

    Article  CAS  Google Scholar 

  52. Chacko SM, Thambi PT, Kuttan R, Nishigaki I (2010) Beneficial effects of green tea: a literature review. Chin Med 5:13–18

    Article  Google Scholar 

  53. Diepvens K, Westerterp KR, Westerterp-Plantenga MS (2007) Obesity and thermogenesis related to the consumption of caffeine, ephedrine, capsaicin, and green tea. Am J Physiol Regul Integr Comp Physiol 292:R77–R85

    Article  CAS  Google Scholar 

  54. Cooper R, Morré DJ, Morré DM (2005) Medicinal benefits of green tea: part I. Review of noncancer health benefits. J Altern Complement Med 11:521–528

    Article  Google Scholar 

  55. Cabrera C, Artacho R, Giménez R (2006) Beneficial effects of green tea, a review. J Am Coll Nutr 25:79–99

    Article  CAS  Google Scholar 

  56. Basu A, Lucas EA (2007) Mechanisms and effects of green tea on cardiovascular health. Nutr Rev 65:361–375

    Article  Google Scholar 

  57. Wu CD, Wei GX (2003) Tea as a functional food for oral health. Nutrition 18:443–444

    Article  Google Scholar 

  58. Higdon JV, Frei B (2003) Tea catechins and polyphenols: health effects, metabolism, and antioxidant functions. Crit Rev Food Sci Nutr 43:89–143

    Article  CAS  Google Scholar 

  59. Cabrera C, Giménez R, López MC (2003) Determination of tea components with antioxidant activity. J Agric Food Chem 51:4427–4435

    Article  CAS  Google Scholar 

  60. Al-salafe R, Irshad M, Abdulghani HM (2014) Does green tea help to fight against obesity? An overview of the epidemiological reports. Austin J Clin Med 1:1011–1019

    Google Scholar 

  61. Diepvens K, Kovacs EM, Nijs IM, Vogels N, Westerterp-Plantenga MS (2005) Effect of green tea on resting energy expenditure and substrate oxidation during weight loss in overweight females. Br J Nutr 94:1026–1034

    Article  CAS  Google Scholar 

  62. Shen Y, Song SJ, Keum N, Park T (2014) Olive leaf extract attenuates obesity in high-fat diet-fed mice by modulating the expression of molecules involved in adipogenesis and thermogenesis. eCAM 2014, Article ID 971890, 12 pages

    Google Scholar 

  63. de Bock M, Derraik JGB, Brennan CM, Biggs JB, Morgan PE et al (2013) Olive (Olea europaea L.) leaf polyphenols improve insulin sensitivity in middle-aged overweight men: a randomized, placebo-controlled, crossover trial. PLoS One 8(3):e57622. doi:10.1371/journal.pone.0057622

    Article  Google Scholar 

  64. Saad B, Azaizeh H, Said O (2008) Arab herbal medicine. In: Watson RR, Preedy VR (eds) Botanical medicine in clinical practice. CABI, Wallingford

    Google Scholar 

  65. Saad B, Said O (2011) Herbal medicine. In Greco-Arab and islamic herbal medicine: traditional system, ethics, safety, efficacy and regulatory issues. Wiley-Blackwell/ Wiley, pp. 47–71

    Google Scholar 

  66. Saad B (2014) Greco-Arab and islamic herbal medicine, a review. Eur J Med Plants 4(3):249–258

    Article  Google Scholar 

  67. Said O, Saad B, Fulder S, Amin R, Kassis E, Khalil K (2009) Hypolipidemic activity of extracts from Eriobotrya japonica and Olea europaea, traditionally used in the Greco-Arab medicine in maintaining healthy fat levels in the blood. Open Complement Med J 1:84–91

    Google Scholar 

  68. Susalit E, Agus N, Effendi I, Tjandrawinata RR, Nofiarny D et al (2011) Olive (Olea europaea) leaf extract effective in patients with stage-1 hypertension: comparison with Captopril. Phytomedicine 18:251–258

    Article  CAS  Google Scholar 

  69. Said O, Fulder S, Khalil K, Azaizeh H, Kassis E, Saad B (2008) Maintaining a physiological blood glucose level with “Glucolevel”, a combination of four anti-diabetes plants used in traditional Arab herbal medicine. eCAM 5:421–428

    Google Scholar 

  70. Bradford PG (2013) Curcumin and obesity. Biofactors 39:78–87

    Article  CAS  Google Scholar 

  71. Aggarwal BB (2010) Targeting inflammation-induced obesity and metabolic diseases by curcumin and other nutraceuticals. Annu Rev Nutr 30:173–199

    Article  CAS  Google Scholar 

  72. Taghizadeh M, Memarzadeh MR,·Asemi Z, Esmaillzadeh A (2015) Effect of the cumin cyminum L. Intake on weight loss, metabolic profiles and biomarkers of oxidative stress in overweight subjects: a randomized double-blind placebo-controlled clinical trial. Ann Nutr Metab 66:117–124

    Google Scholar 

  73. Saad B (2015) Greco-Arab and islamic diet therapy: tradition research and practice. Arab J Med Aromat Plants 1:1–24

    Article  Google Scholar 

  74. Al-Muammar MN, Khan F (2012) Obesity: the preventive role of the pomegranate (Punica granatum). Nutrition 28:595–604

    Article  CAS  Google Scholar 

  75. Lei F, Zhang XN, Wang W, Xing DM, Xie WD, Su H et al (2007) Evidence of antiobesity effects of the pomegranate leaf extract in high-fat diet induced obese mice. Int J Obes 31:1023–1029

    Article  CAS  Google Scholar 

  76. Mousavinejad DZ, Rezaei K, Khodaparast MHH (2009) Identification and quantification of phenolic compounds and their effects on antioxidant activity in pomegranate juices of eight Iranian cultivars. Food Chem 115:1274–1278

    Article  CAS  Google Scholar 

  77. Fadavi ABM, Azizi MH, Bayat M (2005) Physicochemical composition of ten pomegranate cultivars (Punica granatum L.) grown in Iran. Food Sci Technol Int 11:113–119

    Article  Google Scholar 

  78. Larrosa M, Gonzalez-Sarrias A, Garcia-Conesa MT, Tomas-Barberan FA, Espin JC (2006) Urolithins, ellagic acid-derived metabolites produced by human colonic microflora, exhibit estrogenic and antiestrogenic activities. J Agric Food Chem 54:1611–1620

    Article  CAS  Google Scholar 

  79. Bialonska D, Kasimsetty SG, Schrader KK, Ferreira D (2009) The effect of pomegranate (Punica granatum L.) byproducts and ellagitannins on the growth of human gut bacteria. J Agric Food Chem 57:8344–8349

    Article  CAS  Google Scholar 

  80. Fukuchi Y, Hiramitsu M, Okada M, Hayashi S, Nabeno Y, Osawa T, Naito M (2008) Lemon polyphenols suppress diet-induced obesity by up-regulation of mRNA levels of the enzymes involved in β-oxidation in mouse white adipose tissue. J Clin Biochem Nutr 43:201–209

    Article  Google Scholar 

  81. Murase T, Misawa K, Haramizu S, Minegishi Y, Hase T (2010) Nootkatone, a characteristic constituent of grapefruit, stimulates energy metabolism and prevents diet-induced obesity by activating AMPK. Am J Physiol Endocrinol Metab 299:E266–E275

    CAS  Google Scholar 

  82. Fujioka K, Greenway F, Sheard J, Ying Y (2006) The effects of grapefruit on weight and insulin resistance: relationship to the metabolic syndrome. J Med Food 9:49–54

    Article  CAS  Google Scholar 

  83. Gamboa-Gómez CI, Rocha-Guzmán NE, Gallegos-Infante JA, Moreno-Jiménez MR, Vázquez-Cabral BD, González-Laredo RF (2015) Plants with potential use on obesity and its complications. EXCLI J 14:809–831

    Google Scholar 

  84. Ali BA, Blunden G, Tanira MO, Nemmar A (2008) Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): a review of recent research. Food Chem Toxicol 46:409–420

    Article  CAS  Google Scholar 

  85. Velasquez MT, Bhathena SJ (2007) Role of dietary soy protein in obesity. Int J Med Sci 2007(4):72–82

    Article  Google Scholar 

  86. Siriwardhana N, Kalupahana NS, Cekanovac M, LeMieuxa M, Greerd B, Moustaid-Moussa N (2013) Modulation of adipose tissue inflammation by bioactive food compounds. J Nutr Biochem 24:613–623

    Article  CAS  Google Scholar 

  87. Hirai S, Takahashi N, Goto T, Lin S, Uemura T, Yu R, Kawada T (2010) Functional food targeting the regulation of obesity-induced inflammatory responses and pathologies. Mediators Inflamm Article ID 367838. doi:10.1155/2010/367838

  88. Kim M, Park J, Seo M, Jung J, Lee Y, Kang K (2010) Genistein and daidzein repress adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells via Wnt/beta-catenin signalling or lipolysis. Cell Prolif 2:594–605

    Article  Google Scholar 

  89. Davis J, Higginbotham A, O’Connor T, Moustaid-Moussa N, Tebbe A, Kim YC et al (2007) Soy protein and isoflavones influence adiposity and development of metabolic syndrome in the obese male ZDF rat. Ann Nutr Metab 51:42–52

    Article  CAS  Google Scholar 

  90. Greaves KA, Wilson MD, Rudel LL, Williams JK, Wagner JD (2000) Consumption of soy protein reduces cholesterol absorption compared to casein protein alone or supplemented with an isoflavone extract or conjugated equine estrogen in ovariectomized cynomolgus monkeys. J Nutr 130:820–826

    CAS  Google Scholar 

  91. Mezei O, Banz WJ, Steger RW, Peluso MR, Winters TA, Shay N (2003) Soy isoflavones exert antidiabetic and hypolipidemic effects through the PPAR pathways in obese Zucker rats and murine RAW 264.7 cells. J Nutr 133:1238–1243

    CAS  Google Scholar 

  92. Nagasawa A, Fukui K, Kojima M, Kishida K, Maeda N, Nagaretani H, Hibuse T, Nishizawa H, Kihara S, Waki M, Takamatsu K, Funahashi T, Matsuzawa Y (2003) Divergent effects of soy protein diet on the expression of adipocytokines. Biochem Biophys Res Commun 311:909–914

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Saad, B., Zaid, H., Shanak, S., Kadan, S. (2017). Anti-obesity Medicinal Plants. In: Anti-diabetes and Anti-obesity Medicinal Plants and Phytochemicals. Springer, Cham. https://doi.org/10.1007/978-3-319-54102-0_3

Download citation

Publish with us

Policies and ethics