Macrophages pp 147-158 | Cite as

Macrophages in Invertebrates: From Insects and Crustaceans to Marine Bivalves

  • Prasad Abnave
  • Xavier Muracciole
  • Eric GhigoEmail author
Part of the Results and Problems in Cell Differentiation book series (RESULTS, volume 62)


Macrophages are critical components of the antimicrobial response. The recent explosion of knowledge on the evolutionary, genetic, and biochemical aspects of the interaction between macrophages and microbes has renewed scientific interest in macrophages. The conservation of immune components or mechanisms between organisms during the evolutionary process allows us to elucidate antimicrobial mechanisms or discover new immune functions through the study of basal-branching organisms, such as invertebrates. As a result, immunity in non-vertebrates has attracted the attention of researchers in the last few decades. In this review, we summarize what is presently known about macrophage-like cells in various invertebrate species.


Hemocytes Phagocytosis Antimicrobial peptide Toll-like receptors 



Pathogen-associated molecular patterns


Peptidoglycan recognition protein


Pattern recognition receptor


Reactive nitrogen species


Reactive oxygen species


Thioester-containing protein


  1. Abnave P, Mottola G, Gimenez G, Boucherit N, Trouplin V, Torre C, Conti F, Ben Amara A, Lepolard C, Djian B, Hamaoui D, Mettouchi A, Kumar A, Pagnotta S, Bonatti S, Lepidi H, Salvetti A, Abi-Rached L, Lemichez E, Mege JL, Ghigo E (2014) Screening in planarians identifies MORN2 as a key component in LC3-associated phagocytosis and resistance to bacterial infection. Cell Host Microbe 16(3):338–350CrossRefPubMedGoogle Scholar
  2. Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124(4):783–801CrossRefPubMedGoogle Scholar
  3. Bachere E, Rosa RD, Schmitt P, Poirier AC, Merou N, Charriere GM, Destoumieux-Garzon D (2015) The new insights into the oyster antimicrobial defense: cellular, molecular and genetic view. Fish Shellfish Immunol 46(1):50–64CrossRefPubMedGoogle Scholar
  4. Beaven AE, Paynter KT (1999) Acidification of the phagosome in Crassostrea virginica hemocytes following engulfment of zymosan. Biol Bull 196(1):26–33CrossRefPubMedGoogle Scholar
  5. Blaise C, Trottier S, Gagne F, Lallement C, Hansen PD (2002) Immunocompetence of bivalve hemocytes as evaluated by a miniaturized phagocytosis assay. Environ Toxicol 17(3):160–169CrossRefPubMedGoogle Scholar
  6. Blandin S, Levashina EA (2004) Thioester-containing proteins and insect immunity. Mol Immunol 40(12):903–908CrossRefPubMedGoogle Scholar
  7. Bosco-Drayon V, Poidevin M, Boneca IG, Narbonne-Reveau K, Royet J, Charroux B (2012) Peptidoglycan sensing by the receptor PGRP-LE in the Drosophila gut induces immune responses to infectious bacteria and tolerance to microbiota. Cell Host Microbe 12(2):153–165CrossRefPubMedGoogle Scholar
  8. Browne N, Heelan M, Kavanagh K (2013) An analysis of the structural and functional similarities of insect hemocytes and mammalian phagocytes. Virulence 4(7):597–603CrossRefPubMedPubMedCentralGoogle Scholar
  9. Buchmann K (2014) Evolution of innate immunity: clues from invertebrates via fish to mammals. Front Immunol 5:459CrossRefPubMedPubMedCentralGoogle Scholar
  10. Butt TM, Shields KS (1996) The structure and behavior of gypsy moth (Lymantria dispar) hemocytes. J Invertebr Pathol 68(1):1–14CrossRefPubMedGoogle Scholar
  11. Canesi L, Betti M, Ciacci C, Citterio B, Pruzzo C, Gallo G (2003) Tyrosine kinase-mediated cell signalling in the activation of Mytilus hemocytes: possible role of STAT-like proteins. Biol Cell 95(9):603–613CrossRefPubMedGoogle Scholar
  12. Canesi L, Gallo G, Gavioli M, Pruzzo C (2002) Bacteria-hemocyte interactions and phagocytosis in marine bivalves. Microsc Res Tech 57(6):469–476CrossRefPubMedGoogle Scholar
  13. Cheng TC (1975) Functional morphology and biochemistry of molluscan phagocytes. Ann N Y Acad Sci 266:343–379CrossRefPubMedGoogle Scholar
  14. Ciacci C, Betti M, Canonico B, Citterio B, Roch P, Canesi L (2010) Specificity of anti-Vibrio immune response through p38 MAPK and PKC activation in the hemocytes of the mussel Mytilus galloprovincialis. J Invertebr Pathol 105(1):49–55CrossRefPubMedGoogle Scholar
  15. Coulaud PJ, Lepolard C, Bechah Y, Berenger JM, Raoult D, Ghigo E (2015) Hemocytes from Pediculus humanus humanus are hosts for human bacterial pathogens. Front Cell Infect Microbiol 4:183CrossRefPubMedPubMedCentralGoogle Scholar
  16. da Silva C, Dunphy GB, Rau ME (2000) Interaction of hemocytes and prophenoloxidase system of fifth instar nymphs of Acheta domesticus with bacteria. Dev Comp Immunol 24(4):367–379CrossRefPubMedGoogle Scholar
  17. de Azambuja P, Garcia ES, Ratcliffe NA (1991) Aspects of classification of Hemiptera hemocytes from six triatomine species. Mem Inst Oswaldo Cruz 86(1):1–10CrossRefPubMedGoogle Scholar
  18. Destoumieux D, Bulet P, Loew D, Van Dorsselaer A, Rodriguez J, Bachere E (1997) Penaeidins, a new family of antimicrobial peptides isolated from the shrimp Penaeus vannamei (Decapoda). J Biol Chem 272(45):28398–28406CrossRefPubMedGoogle Scholar
  19. Dodd RB, Drickamer K (2001) Lectin-like proteins in model organisms: implications for evolution of carbohydrate-binding activity. Glycobiology 11(5):71R–79RCrossRefPubMedGoogle Scholar
  20. Dziarski R, Gupta D (2006) The peptidoglycan recognition proteins (PGRPs). Genome Biol 7(8):232CrossRefPubMedPubMedCentralGoogle Scholar
  21. Elrod-Erickson M, Mishra S, Schneider D (2000) Interactions between the cellular and humoral immune responses in Drosophila. Curr Biol 10(13):781–784CrossRefPubMedGoogle Scholar
  22. Epelman S, Lavine KJ, Randolph GJ (2014) Origin and functions of tissue macrophages. Immunity 41(1):21–35CrossRefPubMedPubMedCentralGoogle Scholar
  23. Foukas LC, Katsoulas HL, Paraskevopoulou N, Metheniti A, Lambropoulou M, Marmaras VJ (1998) Phagocytosis of Escherichia coli by insect hemocytes requires both activation of the Ras/mitogen-activated protein kinase signal transduction pathway for attachment and beta3 integrin for internalization. J Biol Chem 273(24):14813–14818CrossRefPubMedGoogle Scholar
  24. Gaitanaki C, Kefaloyianni E, Marmari A, Beis I (2004) Various stressors rapidly activate the p38-MAPK signaling pathway in Mytilus galloprovincialis (Lam.). Mol Cell Biochem 260 (1–2):119–127Google Scholar
  25. Gelinas M, Fortier M, Lajeunesse A, Fournier M, Gagnon C, Barnabe S, Gagne F (2014) Responses of freshwater mussel (Elliptio complanata) hemocytes exposed in vitro to crude extracts of Microcystis aeruginosa and Lyngbya wollei. Ecotoxicology (London, England) 23(2):260–266CrossRefGoogle Scholar
  26. Giulianini PG, Bierti M, Lorenzon S, Battistella S, Ferrero EA (2007) Ultrastructural and functional characterization of circulating hemocytes from the freshwater crayfish Astacus leptodactylus: cell types and their role after in vivo artificial non-self challenge. Micron 38(1):49–57CrossRefPubMedGoogle Scholar
  27. Gordon S (2008) Elie Metchnikoff: father of natural immunity. Eur J Immunol 38(12):3257–3264CrossRefPubMedGoogle Scholar
  28. Gordon S (2016) Phagocytosis: an immunobiologic process. Immunity 44(3):463–475CrossRefPubMedGoogle Scholar
  29. Hernandez S, Lanz H, Rodriguez MH, Torres JA, Martinez-Palomo A, Tsutsumi V (1999) Morphological and cytochemical characterization of female Anopheles albimanus (Diptera: Culicidae) hemocytes. J Med Entomol 36(4):426–434CrossRefPubMedGoogle Scholar
  30. Hillyer JF, Strand MR (2014) Mosquito hemocyte-mediated immune responses. Curr Opin Insect Sci 3:14–21CrossRefPubMedPubMedCentralGoogle Scholar
  31. Imler JL (2014) Overview of Drosophila immunity: a historical perspective. Dev Comp Immunol 42(1):3–15CrossRefPubMedGoogle Scholar
  32. Jauzein C, Donaghy L, Volety AK (2013) Flow cytometric characterization of hemocytes of the sunray venus clam Macrocallista nimbosa and influence of salinity variation. Fish Shellfish Immunol 35(3):716–724CrossRefPubMedGoogle Scholar
  33. Jiang Q, Zhou Z, Wang L, Wang L, Yue F, Wang J, Song L (2013) A scallop nitric oxide synthase (NOS) with structure similar to neuronal NOS and its involvement in the immune defense. PloS One 8(7):e69158CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kaufmann SH, Dorhoi A (2016) Molecular determinants in phagocyte-bacteria interactions. Immunity 44(3):476–491CrossRefPubMedGoogle Scholar
  35. Khoo L, Robinette DW, Noga EJ (1999) Callinectin, an antibacterial peptide from blue crab, Callinectes sapidus, hemocytes. Mar Biotechnol (New York, NY) 1(1):44–51CrossRefGoogle Scholar
  36. Kinchen JM, Ravichandran KS (2008) Phagosome maturation: going through the acid test. Nat Rev 9(10):781–795CrossRefGoogle Scholar
  37. Koizumi N, Imai Y, Morozumi A, Imamura M, Kadotani T, Yaoi K, Iwahana H, Sato R (1999) Lipopolysaccharide-binding protein of Bombyx mori participates in a hemocyte-mediated defense reaction against gram-negative bacteria. J Insect Physiol 45(9):853–859CrossRefPubMedGoogle Scholar
  38. Kounatidis I, Ligoxygakis P (2012) Drosophila as a model system to unravel the layers of innate immunity to infection. Open Biol 2(5):120075CrossRefPubMedPubMedCentralGoogle Scholar
  39. Lavine MD, Strand MR (2002) Insect hemocytes and their role in immunity. Insect Biochem Mol Biol 32(10):1295–1309CrossRefPubMedGoogle Scholar
  40. Lee SY, Lee BL, Soderhall K (2003) Processing of an antibacterial peptide from hemocyanin of the freshwater crayfish Pacifastacus leniusculus. J Biol Chem 278(10):7927–7933CrossRefPubMedGoogle Scholar
  41. Levashina EA, Moita LF, Blandin S, Vriend G, Lagueux M, Kafatos FC (2001) Conserved role of a complement-like protein in phagocytosis revealed by dsRNA knockout in cultured cells of the mosquito, Anopheles gambiae. Cell 104(5):709–718CrossRefPubMedGoogle Scholar
  42. Luckhart S, Cupp MS, Cupp EW (1992) Morphological and functional classification of the hemocytes of adult female Simulium vittatum (Diptera: Simuliidae). J Med Entomol 29(3):457–466CrossRefPubMedGoogle Scholar
  43. Matozzo V, Bailo L (2015) A first insight into haemocytes of the smooth venus clam Callista chione. Fish Shellfish Immunol 42(2):494–502CrossRefPubMedGoogle Scholar
  44. Mechnikov II (1905) Immunity in infective diseases. By Il’ia Il’ich Mechnikov, 1905. Rev Infect Dis 10(1):617Google Scholar
  45. Medzhitov R, Preston-Hurlburt P, Janeway CA Jr (1997) A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388(6640):394–397CrossRefPubMedGoogle Scholar
  46. Molina-Cruz A, DeJong RJ, Charles B, Gupta L, Kumar S, Jaramillo-Gutierrez G, Barillas-Mury C (2008) Reactive oxygen species modulate Anopheles gambiae immunity against bacteria and Plasmodium. J Biol Chem 283(6):3217–3223CrossRefPubMedGoogle Scholar
  47. Myllymaki H, Valanne S, Ramet M (2014) The Drosophila imd signaling pathway. J Immunol 192(8):3455–3462CrossRefPubMedGoogle Scholar
  48. Nandety RS, Kuo YW, Nouri S, Falk BW (2015) Emerging strategies for RNA interference (RNAi) applications in insects. Bioengineered 6(1):8–19CrossRefPubMedGoogle Scholar
  49. Nappi AJ, Vass E, Frey F, Carton Y (2000) Nitric oxide involvement in Drosophila immunity. Nitric Oxide 4(4):423–430CrossRefPubMedGoogle Scholar
  50. Nonaka S, Nagaosa K, Mori T, Shiratsuchi A, Nakanishi Y (2013) Integrin alphaPS3/betanu-mediated phagocytosis of apoptotic cells and bacteria in Drosophila. J Biol Chem 288(15):10374–10380CrossRefPubMedPubMedCentralGoogle Scholar
  51. O’Neill LA, Golenbock D, Bowie AG (2013) The history of Toll-like receptors—redefining innate immunity. Nat Rev Immunol 13(6):453–460CrossRefPubMedGoogle Scholar
  52. Pauletto M, Milan M, Moreira R, Novoa B, Figueras A, Babbucci M, Patarnello T, Bargelloni L (2014) Deep transcriptome sequencing of Pecten maximus hemocytes: a genomic resource for bivalve immunology. Fish Shellfish Immunol 37(1):154–165CrossRefPubMedGoogle Scholar
  53. Pham LN, Dionne MS, Shirasu-Hiza M, Schneider DS (2007) A specific primed immune response in Drosophila is dependent on phagocytes. PLoS Pathog 3(3):e26CrossRefPubMedPubMedCentralGoogle Scholar
  54. Pons J, Bauza-Ribot MM, Jaume D, Juan C (2014) Next-generation sequencing, phylogenetic signal and comparative mitogenomic analyses in Metacrangonyctidae (Amphipoda: Crustacea). BMC Genomics 15:566CrossRefPubMedPubMedCentralGoogle Scholar
  55. Ramet M (2012) The fruit fly Drosophila melanogaster unfolds the secrets of innate immunity. Acta Paediatr 101(9):900–905CrossRefPubMedGoogle Scholar
  56. Rauta PR, Samanta M, Dash HR, Nayak B, Das S (2014) Toll-like receptors (TLRs) in aquatic animals: signaling pathways, expressions and immune responses. Immunol Lett 158(1–2):14–24CrossRefPubMedGoogle Scholar
  57. Royet J, Gupta D, Dziarski R (2011) Peptidoglycan recognition proteins: modulators of the microbiome and inflammation. Nat Rev Immunol 11(12):837–851PubMedGoogle Scholar
  58. Sagi A, Manor R, Ventura T (2013) Gene silencing in crustaceans: from basic research to biotechnologies. Genes 4(4):620–645CrossRefPubMedPubMedCentralGoogle Scholar
  59. Satake H, Sekiguchi T (2012) Toll-like receptors of deuterostome invertebrates. Front Immunol 3:34CrossRefPubMedPubMedCentralGoogle Scholar
  60. Sellge G, Kufer TA (2015) PRR-signaling pathways: learning from microbial tactics. Semin Immunol 27(2):75–84CrossRefPubMedGoogle Scholar
  61. Shi XZ, Zhao XF, Wang JX (2014) A new type antimicrobial peptide astacidin functions in antibacterial immune response in red swamp crayfish Procambarus clarkii. Dev Comp Immunol 43(1):121–128CrossRefPubMedGoogle Scholar
  62. Su GL, Simmons RL, Wang SC (1995) Lipopolysaccharide binding protein participation in cellular activation by LPS. Crit Rev Immunol 15(3–4):201–214CrossRefPubMedGoogle Scholar
  63. Tzou P, Ohresser S, Ferrandon D, Capovilla M, Reichhart JM, Lemaitre B, Hoffmann JA, Imler JL (2000) Tissue-specific inducible expression of antimicrobial peptide genes in Drosophila surface epithelia. Immunity 13(5):737–748CrossRefPubMedGoogle Scholar
  64. Valanne S, Wang JH, Ramet M (2014) The Drosophila Toll signaling pathway. J Immunol 186(2):649–656CrossRefGoogle Scholar
  65. Valenzuela-Munoz V, Gallardo-Escarate C (2014) TLR and IMD signaling pathways from Caligus rogercresseyi (Crustacea: Copepoda): in silico gene expression and SNPs discovery. Fish Shellfish Immunol 36(2):428–434CrossRefPubMedGoogle Scholar
  66. Vasta GR, Cheng TC, Marchalonis JJ (1984) A lectin on the hemocyte membrane of the oyster (Crassostrea virginica). Cell Immunol 88(2):475–488CrossRefPubMedGoogle Scholar
  67. Vazquez L, Alpuche J, Maldonado G, Agundis C, Pereyra-Morales A, Zenteno E (2009) Review: immunity mechanisms in crustaceans. Innate Immun 15(3):179–188CrossRefPubMedGoogle Scholar
  68. Wang W, Li M, Wang L, Chen H, Liu Z, Jia Z, Qiu L, Song L (2016) The granulocytes are the main immunocompetent hemocytes in Crassostrea gigas. Dev Comp Immunol 67:221–228CrossRefPubMedGoogle Scholar
  69. Weber AN, Tauszig-Delamasure S, Hoffmann JA, Lelievre E, Gascan H, Ray KP, Morse MA, Imler JL, Gay NJ (2003) Binding of the Drosophila cytokine Spatzle to Toll is direct and establishes signaling. Nat Immunol 4(8):794–800CrossRefPubMedGoogle Scholar
  70. Weiss G, Schaible UE (2015) Macrophage defense mechanisms against intracellular bacteria. Immunol Rev 264(1):182–203CrossRefPubMedPubMedCentralGoogle Scholar
  71. Wynn TA, Vannella KM (2016) Macrophages in tissue repair, regeneration, and fibrosis. Immunity 44(3):450–462CrossRefPubMedPubMedCentralGoogle Scholar
  72. Ye T, Tang W, Zhang X (2012) Involvement of Rab6 in the regulation of phagocytosis against virus infection in invertebrates. J Proteome Res 11(10):4834–4846CrossRefPubMedGoogle Scholar
  73. Yi HY, Chowdhury M, Huang YD, Yu XQ (2014) Insect antimicrobial peptides and their applications. Appl Microbiol Biotechnol 98(13):5807–5822CrossRefPubMedPubMedCentralGoogle Scholar
  74. You Y, Huan P, Liu B (2012) RNAi assay in primary cells: a new method for gene function analysis in marine bivalve. Mol Biol Rep 39(8):8209–8216CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Prasad Abnave
    • 1
    • 2
  • Xavier Muracciole
    • 1
    • 3
  • Eric Ghigo
    • 1
    Email author
  1. 1.URMITE, CNRS UMR 7278, IRD198, INSERM U1095APHM, Institut Hospitalier Universitaire Méditerranée-Infection, Aix-Marseille UniversitéMarseille Cedex 05France
  2. 2.Department of ZoologyUniversity of OxfordOxfordUK
  3. 3.Department of Radiotherapy OncologyCHU La Timone, Assistance Publique-Hopitaux MarseilleMarseilleFrance

Personalised recommendations