Macrophages pp 317-351 | Cite as

Activation of Macrophages in Response to Biomaterials

Part of the Results and Problems in Cell Differentiation book series (RESULTS, volume 62)


Macrophages are the initial biologic responders to biomaterials. These highly plastic immune sentinels control and modulate responses to materials, foreign or natural. The responses may vary from immune stimulatory to immune suppressive. Several parameters have been identified that influence macrophage response to biomaterials, specifically size, geometry, surface topography, hydrophobicity, surface chemistry, material mechanics, and protein adsorption. In this review, the influence of these parameters is supported with examples of both synthetic and naturally derived materials and illustrates that a combination of these parameters ultimately influences macrophage responses to the biomaterial. Having an understanding of these properties may lead to highly efficient design of biomaterials with desirable biologic response properties.



Our original research investigating macrophage activation in response to biomaterials has been funded, in part, by the National Institute of Biomedical Imaging and Bioengineering (EB022374).


  1. Ademovic Z, Holst B, Kahn RA, Jorring I, Brevig T, Wei J, Hou X, Winter-Jensen B, Kingshott P (2006) The method of surface PEGylation influences leukocyte adhesion and activation. J Mater Sci Mater Med 17(3):203–211. doi:10.1007/s10856-006-7306-2 PubMedCrossRefGoogle Scholar
  2. Akilbekova D, Philiph R, Graham A, Bratlie KM (2015) Macrophage reprogramming: influence of latex beads with various functional groups on macrophage phenotype and phagocytic uptake in vitro. J Biomed Mater Res A 103(1):262–268. doi:10.1002/jbm.a.35169 PubMedCrossRefGoogle Scholar
  3. Anand G, Sharma S, Dutta AK, Kumar SK, Belfort G (2010) Conformational transitions of adsorbed proteins on surfaces of varying polarity. Langmuir 26(13):10803–10811. doi:10.1021/la1006132 PubMedCrossRefGoogle Scholar
  4. Anderson JM, Miller KM (1984) Biomaterial biocompatibility and the macrophage. Biomaterials 5(1):5–10PubMedCrossRefGoogle Scholar
  5. Anderson JM, Rodriguez A, Chang DT (2008) Foreign body reaction to biomaterials. Semin Immunol 20(2):86–100. doi:10.1016/j.smim.2007.11.004 PubMedCrossRefGoogle Scholar
  6. Anselmo AC, Zhang M, Kumar S, Vogus DR, Menegatti S, Helgeson ME, Mitragotri S (2015) Elasticity of nanoparticles influences their blood circulation, phagocytosis, endocytosis, and targeting. ACS Nano 9(3):3169–3177. doi:10.1021/acsnano.5b00147 PubMedCrossRefGoogle Scholar
  7. Ballotta V, Driessen-Mol A, Bouten CV, Baaijens FP (2014) Strain-dependent modulation of macrophage polarization within scaffolds. Biomaterials 35(18):4919–4928. doi:10.1016/j.biomaterials.2014.03.002 PubMedCrossRefGoogle Scholar
  8. Barbosa JN, Madureira P, Barbosa MA, Aguas AP (2006) The influence of functional groups of self-assembled monolayers on fibrous capsule formation and cell recruitment. J Biomed Mater Res A 76(4):737–743. doi:10.1002/jbm.a.30602 PubMedCrossRefGoogle Scholar
  9. Barker DE, Retsky MI, Schultz S (1978) “Bleeding” of silicone from bag-gel breast implants, and its clinical relation to fibrous capsule reaction. Plast Reconstr Surg 61(6):836–841PubMedCrossRefGoogle Scholar
  10. Beacham DA, Wise RJ, Turci SM, Handin RI (1992) Selective inactivation of the Arg-Gly-Asp-Ser (RGDS) binding site in von Willebrand factor by site-directed mutagenesis. J Biol Chem 267(5):3409–3415PubMedGoogle Scholar
  11. Bidan CM, Veldsink AC, Meurs H, Gosens R (2015) Airway and extracellular matrix mechanics in COPD. Front Physiol 6:346. doi:10.3389/fphys.2015.00346 PubMedPubMedCentralCrossRefGoogle Scholar
  12. Biswas SK, Mantovani A (2010) Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol 11(10):889–896. doi:10.1038/ni.1937 PubMedCrossRefGoogle Scholar
  13. Blakney AK, Swartzlander MD, Bryant SJ (2012) The effects of substrate stiffness on the in vitro activation of macrophages and in vivo host response to poly(ethylene glycol)-based hydrogels. J Biomed Mater Res A 100(6):1375–1386. doi:10.1002/jbm.a.34104 PubMedPubMedCentralCrossRefGoogle Scholar
  14. Blanckmeister CA, Sussdorf DH (1985) Macrophage activation by cross-linked dextran. J Leukoc Biol 37(2):209–219PubMedGoogle Scholar
  15. Boyle JJ, Christou I, Iqbal MB, Nguyen AT, Leung VW, Evans PC, Liu Y, Johns M, Kirkham P, Haskard DO (2012) Solid-phase immunoglobulins IgG and IgM activate macrophages with solid-phase IgM acting via a novel scavenger receptor a pathway. Am J Pathol 181(1):347–361. doi:10.1016/j.ajpath.2012.03.040 PubMedCrossRefGoogle Scholar
  16. Brancato SK, Albina JE (2011) Wound macrophages as key regulators of repair: origin, phenotype, and function. Am J Pathol 178(1):19–25. doi:10.1016/j.ajpath.2010.08.003 PubMedPubMedCentralCrossRefGoogle Scholar
  17. Brevig T, Holst B, Ademovic Z, Rozlosnik N, Rohrmann JH, Larsen NB, Hansen OC, Kingshott P (2005) The recognition of adsorbed and denatured proteins of different topographies by beta2 integrins and effects on leukocyte adhesion and activation. Biomaterials 26(16):3039–3053. doi:10.1016/j.biomaterials.2004.09.006 PubMedCrossRefGoogle Scholar
  18. Brodbeck WG, Shive MS, Colton E, Nakayama Y, Matsuda T, Anderson JM (2001) Influence of biomaterial surface chemistry on the apoptosis of adherent cells. J Biomed Mater Res 55(4):661–668PubMedCrossRefGoogle Scholar
  19. Brodbeck WG, Nakayama Y, Matsuda T, Colton E, Ziats NP, Anderson JM (2002) Biomaterial surface chemistry dictates adherent monocyte/macrophage cytokine expression in vitro. Cytokine 18(6):311–319PubMedCrossRefGoogle Scholar
  20. Brown BN, Valentin JE, Stewart-Akers AM, McCabe GP, Badylak SF (2009) Macrophage phenotype and remodeling outcomes in response to biologic scaffolds with and without a cellular component. Biomaterials 30(8):1482–1491. doi:10.1016/j.biomaterials.2008.11.040 PubMedPubMedCentralCrossRefGoogle Scholar
  21. Bryers JD, Giachelli CM, Ratner BD (2012) Engineering biomaterials to integrate and heal: the biocompatibility paradigm shifts. Biotechnol Bioeng 109(8):1898–1911. doi:10.1002/bit.24559 PubMedPubMedCentralCrossRefGoogle Scholar
  22. Bygd HC, Forsmark KD, Bratlie KM (2015) Altering in vivo macrophage responses with modified polymer properties. Biomaterials 56:187–197. doi:10.1016/j.biomaterials.2015.03.042 PubMedCrossRefGoogle Scholar
  23. Carreno MP, Gresham HD, Brown EJ (1993) Isolation of leukocyte response integrin: a novel RGD-binding protein involved in regulation of phagocytic function. Clin Immunol Immunopathol 69(1):43–51PubMedCrossRefGoogle Scholar
  24. Champion JA, Mitragotri S (2006) Role of target geometry in phagocytosis. Proc Natl Acad Sci U S A 103(13):4930–4934. doi:10.1073/pnas.0600997103 PubMedPubMedCentralCrossRefGoogle Scholar
  25. Champion JA, Katare YK, Mitragotri S (2007) Particle shape: a new design parameter for micro- and nanoscale drug delivery carriers. J Control Release 121(1–2):3–9. doi:10.1016/j.jconrel.2007.03.022 PubMedPubMedCentralCrossRefGoogle Scholar
  26. Chang DT, Jones JA, Meyerson H, Colton E, Kwon IK, Matsuda T, Anderson JM (2008) Lymphocyte/macrophage interactions: biomaterial surface-dependent cytokine, chemokine, and matrix protein production. J Biomed Mater Res A 87(3):676–687. doi:10.1002/jbm.a.31630 PubMedCrossRefGoogle Scholar
  27. Chen S, Jones JA, Xu Y, Low HY, Anderson JM, Leong KW (2010) Characterization of topographical effects on macrophage behavior in a foreign body response model. Biomaterials 31(13):3479–3491. doi:10.1016/j.biomaterials.2010.01.074 PubMedPubMedCentralCrossRefGoogle Scholar
  28. Classen A, Lloberas J, Celada A (2009) Macrophage activation: classical versus alternative. Methods Mol Biol 531:29–43. doi:10.1007/978-1-59745-396-7_3 PubMedCrossRefGoogle Scholar
  29. Cox TR, Erler JT (2011) Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer. Dis Model Mech 4(2):165–178. doi:10.1242/dmm.004077 PubMedPubMedCentralCrossRefGoogle Scholar
  30. Cross MC, Toomey RG, Gallant ND (2016) Protein-surface interactions on stimuli-responsive polymeric biomaterials. Biomed Mater 11(2):022002. doi:10.1088/1748-6041/11/2/022002 PubMedCrossRefGoogle Scholar
  31. Dale DC, Boxer L, Liles WC (2008) The phagocytes: neutrophils and monocytes. Blood 112(4):935–945. doi:10.1182/blood-2007-12-077917 PubMedCrossRefGoogle Scholar
  32. Denis C, Williams JA, Lu X, Meyer D, Baruch D (1993) Solid-phase von Willebrand factor contains a conformationally active RGD motif that mediates endothelial cell adhesion through the alpha v beta 3 receptor. Blood 82(12):3622–3630PubMedGoogle Scholar
  33. Derlindati E, Dei Cas A, Montanini B, Spigoni V, Curella V, Aldigeri R, Ardigo D, Zavaroni I, Bonadonna RC (2015) Transcriptomic analysis of human polarized macrophages: more than one role of alternative activation? PLoS One 10(3):e0119751. doi:10.1371/journal.pone.0119751 PubMedPubMedCentralCrossRefGoogle Scholar
  34. Diekjiirgen D, Astashkina A, Grainger DW, Holt D, Brooks AE (2012) Cultured primary macrophage activation by lipopolysaccharide depends on adsorbed protein composition and substrate surface chemistry. J Biomater Sci Polym Ed 23(9):1231–1254. doi:10.1163/092050611X580382 PubMedGoogle Scholar
  35. DiPietro LA (1995) Wound healing: the role of the macrophage and other immune cells. Shock 4(4):233–240PubMedCrossRefGoogle Scholar
  36. Dutta D, Sundaram SK, Teeguarden JG, Riley BJ, Fifield LS, Jacobs JM, Addleman SR, Kaysen GA, Moudgil BM, Weber TJ (2007) Adsorbed proteins influence the biological activity and molecular targeting of nanomaterials. Toxicol Sci 100(1):303–315. doi:10.1093/toxsci/kfm217 PubMedCrossRefGoogle Scholar
  37. Dvir T, Timko BP, Kohane DS, Langer R (2011) Nanotechnological strategies for engineering complex tissues. Nat Nanotechnol 6(1):13–22. doi:10.1038/nnano.2010.246 PubMedCrossRefGoogle Scholar
  38. Edwards PC, Fantasia JE (2007) Review of long-term adverse effects associated with the use of chemically-modified animal and nonanimal source hyaluronic acid dermal fillers. Clin Interv Aging 2(4):509–519PubMedPubMedCentralGoogle Scholar
  39. Edwards JP, Zhang X, Frauwirth KA, Mosser DM (2006) Biochemical and functional characterization of three activated macrophage populations. J Leukoc Biol 80(6):1298–1307. doi:10.1189/jlb.0406249 PubMedPubMedCentralCrossRefGoogle Scholar
  40. Elsabahy M, Wooley KL (2012) Design of polymeric nanoparticles for biomedical delivery applications. Chem Soc Rev 41(7):2545–2561. doi:10.1039/c2cs15327k PubMedPubMedCentralCrossRefGoogle Scholar
  41. Elzoghby AO, Samy WM, Elgindy NA (2012) Albumin-based nanoparticles as potential controlled release drug delivery systems. J Control Release 157(2):168–182. doi:10.1016/j.jconrel.2011.07.031 PubMedCrossRefGoogle Scholar
  42. Fernandez-Acenero MJ, Zamora E, Borbujo J (2003) Granulomatous foreign body reaction against hyaluronic acid: report of a case after lip augmentation. Dermatol Surg 29(12):1225–1226PubMedCrossRefGoogle Scholar
  43. Ferrante CJ, Leibovich SJ (2012) Regulation of macrophage polarization and wound healing. Adv Wound Care (New Rochelle) 1(1):10–16. doi:10.1089/wound.2011.0307 CrossRefGoogle Scholar
  44. Franz S, Allenstein F, Kajahn J, Forstreuter I, Hintze V, Moller S, Simon JC (2013) Artificial extracellular matrices composed of collagen I and high-sulfated hyaluronan promote phenotypic and functional modulation of human pro-inflammatory M1 macrophages. Acta Biomater 9(3):5621–5629. doi:10.1016/j.actbio.2012.11.016 PubMedCrossRefGoogle Scholar
  45. Fukano Y, Knowles NG, Usui ML, Underwood RA, Hauch KD, Marshall AJ, Ratner BD, Giachelli C, Carter WG, Fleckman P, Olerud JE (2006) Characterization of an in vitro model for evaluating the interface between skin and percutaneous biomaterials. Wound Repair Regen 14(4):484–491. doi:10.1111/j.1743-6109.2006.00138.x PubMedCrossRefGoogle Scholar
  46. Garash R, Bajpai A, Marcinkiewicz BM, Spiller KL (2016) Drug delivery strategies to control macrophages for tissue repair and regeneration. Exp Biol Med (Maywood) 241(10):1054–1063. doi:10.1177/1535370216649444 CrossRefGoogle Scholar
  47. Garg K, Sell SA, Madurantakam P, Bowlin GL (2009) Angiogenic potential of human macrophages on electrospun bioresorbable vascular grafts. Biomed Mater 4(3):031001. doi:10.1088/1748-6041/4/3/031001 PubMedCrossRefGoogle Scholar
  48. Garg K, Pullen NA, Oskeritzian CA, Ryan JJ, Bowlin GL (2013) Macrophage functional polarization (M1/M2) in response to varying fiber and pore dimensions of electrospun scaffolds. Biomaterials 34(18):4439–4451. doi:10.1016/j.biomaterials.2013.02.065 PubMedPubMedCentralCrossRefGoogle Scholar
  49. Getts DR, Martin AJ, McCarthy DP, Terry RL, Hunter ZN, Yap WT, Getts MT, Pleiss M, Luo X, King NJ, Shea LD, Miller SD (2012) Microparticles bearing encephalitogenic peptides induce T-cell tolerance and ameliorate experimental autoimmune encephalomyelitis. Nat Biotechnol 30(12):1217–1224. doi:10.1038/nbt.2434 PubMedPubMedCentralCrossRefGoogle Scholar
  50. Gordon S (1986) Macrophage activation and differentiation. Ann Inst Pasteur Immunol 137C(2):197–200PubMedCrossRefGoogle Scholar
  51. Gordon S (2007) The macrophage: past, present and future. Eur J Immunol 37(Suppl 1):S9–17. doi:10.1002/eji.200737638 PubMedCrossRefGoogle Scholar
  52. Gordon S, Martinez FO (2010) Alternative activation of macrophages: mechanism and functions. Immunity 32(5):593–604. doi:10.1016/j.immuni.2010.05.007 PubMedCrossRefGoogle Scholar
  53. Gordon S, Taylor PR (2005) Monocyte and macrophage heterogeneity. Nat Rev Immunol 5(12):953–964. doi:10.1038/nri1733 PubMedCrossRefGoogle Scholar
  54. Gratton SE, Ropp PA, Pohlhaus PD, Luft JC, Madden VJ, Napier ME, DeSimone JM (2008) The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci U S A 105(33):11613–11618. doi:10.1073/pnas.0801763105 PubMedPubMedCentralCrossRefGoogle Scholar
  55. Gray JJ (2004) The interaction of proteins with solid surfaces. Curr Opin Struct Biol 14(1):110–115. doi:10.1016/ PubMedCrossRefGoogle Scholar
  56. Greisler H (1988) Macrophage-biomaterial interactions with bioresorbable vascular prostheses. ASAIO Trans 34(4):1051–1059PubMedGoogle Scholar
  57. Greisler HP, Dennis JW, Endean ED, Ellinger J, Friesel R, Burgess W (1989) Macrophage/biomaterial interactions: the stimulation of endothelialization. J Vasc Surg 9(4):588–593PubMedCrossRefGoogle Scholar
  58. Hanson SE, King SN, Kim J, Chen X, Thibeault SL, Hematti P (2011) The effect of mesenchymal stromal cell-hyaluronic acid hydrogel constructs on immunophenotype of macrophages. Tissue Eng Part A 17(19–20):2463–2471. doi:10.1089/ten.TEA.2010.0716 PubMedPubMedCentralCrossRefGoogle Scholar
  59. Helton KL, Ratner BD, Wisniewski NA (2011) Biomechanics of the sensor-tissue interface-effects of motion, pressure, and design on sensor performance and foreign body response-part II: examples and application. J Diabetes Sci Technol 5(3):647–656PubMedPubMedCentralCrossRefGoogle Scholar
  60. Higgins DM, Basaraba RJ, Hohnbaum AC, Lee EJ, Grainger DW, Gonzalez-Juarrero M (2009) Localized immunosuppressive environment in the foreign body response to implanted biomaterials. Am J Pathol 175(1):161–170. doi:10.2353/ajpath.2009.080962 PubMedPubMedCentralCrossRefGoogle Scholar
  61. Hu WJ, Eaton JW, Ugarova TP, Tang L (2001) Molecular basis of biomaterial-mediated foreign body reactions. Blood 98(4):1231–1238PubMedCrossRefGoogle Scholar
  62. Hunt JA, Flanagan BF, McLaughlin PJ, Strickland I, Williams DF (1996) Effect of biomaterial surface charge on the inflammatory response: evaluation of cellular infiltration and TNF alpha production. J Biomed Mater Res 31(1):139–144. doi:10.1002/(SICI)1097-4636(199605)31:1<139::AID-JBM15>3.0.CO;2-I PubMedCrossRefGoogle Scholar
  63. Ihlenfeld JV, Cooper SL (1979) Transient in vivo protein adsorption onto polymeric biomaterials. J Biomed Mater Res 13(4):577–591. doi:10.1002/jbm.820130405 PubMedCrossRefGoogle Scholar
  64. Iribarren P, Correa SG, Sodero N, Riera CM (2002) Activation of macrophages by silicones: phenotype and production of oxidant metabolites. BMC Immunol 3:6PubMedPubMedCentralCrossRefGoogle Scholar
  65. Irwin EF, Saha K, Rosenbluth M, Gamble LJ, Castner DG, Healy KE (2008) Modulus-dependent macrophage adhesion and behavior. J Biomater Sci Polym Ed 19(10):1363–1382. doi:10.1163/156856208786052407 PubMedCrossRefGoogle Scholar
  66. Isenhath SN, Fukano Y, Usui ML, Underwood RA, Irvin CA, Marshall AJ, Hauch KD, Ratner BD, Fleckman P, Olerud JE (2007) A mouse model to evaluate the interface between skin and a percutaneous device. J Biomed Mater Res A 83(4):915–922. doi:10.1002/jbm.a.31391 PubMedCrossRefGoogle Scholar
  67. Jansch M, Jindal AB, Sharmila BM, Samad A, Devarajan PV, Muller RH (2013) Influence of particle shape on plasma protein adsorption and macrophage uptake. Pharmazie 68(1):27–33PubMedGoogle Scholar
  68. Jenney CR, Anderson JM (2000a) Adsorbed IgG: a potent adhesive substrate for human macrophages. J Biomed Mater Res 50(3):281–290PubMedCrossRefGoogle Scholar
  69. Jenney CR, Anderson JM (2000b) Adsorbed serum proteins responsible for surface dependent human macrophage behavior. J Biomed Mater Res 49(4):435–447PubMedCrossRefGoogle Scholar
  70. Kajahn J, Franz S, Rueckert E, Forstreuter I, Hintze V, Moeller S, Simon JC (2012) Artificial extracellular matrices composed of collagen I and high sulfated hyaluronan modulate monocyte to macrophage differentiation under conditions of sterile inflammation. Biomatter 2(4):226--236. doi:10.4161/biom.22855
  71. Kamath S, Bhattacharyya D, Padukudru C, Timmons RB, Tang L (2008) Surface chemistry influences implant-mediated host tissue responses. J Biomed Mater Res A 86(3):617–626. doi:10.1002/jbm.a.31649 PubMedPubMedCentralCrossRefGoogle Scholar
  72. Kao WJ, Lee D (2001) In vivo modulation of host response and macrophage behavior by polymer networks grafted with fibronectin-derived biomimetic oligopeptides: the role of RGD and PHSRN domains. Biomaterials 22(21):2901–2909PubMedCrossRefGoogle Scholar
  73. Kastellorizios M, Tipnis N, Burgess DJ (2015) Foreign body reaction to subcutaneous implants. Adv Exp Med Biol 865:93–108. doi:10.1007/978-3-319-18603-0_6 PubMedCrossRefGoogle Scholar
  74. Kim YK, Que R, Wang SW, Liu WF (2014) Modification of biomaterials with a self-protein inhibits the macrophage response. Adv Healthc Mater 3(7):989–994. doi:10.1002/adhm.201300532 PubMedPubMedCentralCrossRefGoogle Scholar
  75. Klein AW (2004) Granulomatous foreign body reaction against hyaluronic acid. Dermatol Surg 30(7):1070. doi:10.1111/j.1524-4725.2004.30320_1.x PubMedGoogle Scholar
  76. Klopfleisch R (2016) Macrophage reaction against biomaterials in the mouse model—Phenotypes, functions and markers. Acta Biomater. doi:10.1016/j.actbio.2016.07.003 PubMedGoogle Scholar
  77. Koh TJ, DiPietro LA (2011) Inflammation and wound healing: the role of the macrophage. Expert Rev Mol Med 13:e23. doi:10.1017/S1462399411001943 PubMedPubMedCentralCrossRefGoogle Scholar
  78. Larson TA, Joshi PP, Sokolov K (2012) Preventing protein adsorption and macrophage uptake of gold nanoparticles via a hydrophobic shield. ACS Nano 6(10):9182–9190. doi:10.1021/nn3035155 PubMedPubMedCentralCrossRefGoogle Scholar
  79. Liao KL, Bai XF, Friedman A (2013) The role of CD200-CD200R in tumor immune evasion. J Theor Biol 328:65–76. doi:10.1016/j.jtbi.2013.03.017 PubMedCrossRefGoogle Scholar
  80. Loke P, Gallagher I, Nair MG, Zang X, Brombacher F, Mohrs M, Allison JP, Allen JE (2007) Alternative activation is an innate response to injury that requires CD4+ T cells to be sustained during chronic infection. J Immunol 179(6):3926–3936PubMedCrossRefGoogle Scholar
  81. Lynn AD, Bryant SJ (2011) Phenotypic changes in bone marrow-derived murine macrophages cultured on PEG-based hydrogels activated or not by lipopolysaccharide. Acta Biomater 7(1):123–132. doi:10.1016/j.actbio.2010.07.033 PubMedCrossRefGoogle Scholar
  82. Lynn AD, Kyriakides TR, Bryant SJ (2010) Characterization of the in vitro macrophage response and in vivo host response to poly(ethylene glycol)-based hydrogels. J Biomed Mater Res A 93(3):941–953. doi:10.1002/jbm.a.32595 PubMedGoogle Scholar
  83. Mackaness GB (1977) Cellular immunity and the parasite. Adv Exp Med Biol 93:65–73PubMedCrossRefGoogle Scholar
  84. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25(12):677–686. doi:10.1016/ PubMedCrossRefGoogle Scholar
  85. Martinez FO (2011) Regulators of macrophage activation. Eur J Immunol 41(6):1531–1534. doi:10.1002/eji.201141670 PubMedCrossRefGoogle Scholar
  86. Martinez FO, Gordon S (2014) The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep 6:13. doi:10.12703/P6-13 PubMedPubMedCentralCrossRefGoogle Scholar
  87. Martinez FO, Sica A, Mantovani A, Locati M (2008) Macrophage activation and polarization. Front Biosci 13:453–461PubMedCrossRefGoogle Scholar
  88. Matlaga BF, Yasenchak LP, Salthouse TN (1976) Tissue response to implanted polymers: the significance of sample shape. J Biomed Mater Res 10(3):391–397. doi:10.1002/jbm.820100308 PubMedCrossRefGoogle Scholar
  89. Matzinger P (1994) Tolerance, danger, and the extended family. Annu Rev Immunol 12:991–1045. doi:10.1146/annurev.iy.12.040194.005015 PubMedCrossRefGoogle Scholar
  90. McBane JE, Ebadi D, Sharifpoor S, Labow RS, Santerre JP (2011) Differentiation of monocytes on a degradable, polar, hydrophobic, ionic polyurethane: two-dimensional films vs. three-dimensional scaffolds. Acta Biomater 7(1):115–122. doi:10.1016/j.actbio.2010.08.014 PubMedCrossRefGoogle Scholar
  91. Minardi S, Corradetti B, Taraballi F, Byun JH, Cabrera F, Liu X, Ferrari M, Weiner BK, Tasciotti E (2016) IL-4 release from a biomimetic scaffold for the temporally controlled modulation of macrophage response. Ann Biomed Eng 44(6):2008–2019. doi:10.1007/s10439-016-1580-z PubMedCrossRefGoogle Scholar
  92. Mitragotri S, Lahann J (2009) Physical approaches to biomaterial design. Nat Mater 8(1):15–23. doi:10.1038/nmat2344 PubMedPubMedCentralCrossRefGoogle Scholar
  93. Moon JJ, Huang B, Irvine DJ (2012) Engineering nano- and microparticles to tune immunity. Adv Mater 24(28):3724–3746. doi:10.1002/adma.201200446 PubMedPubMedCentralCrossRefGoogle Scholar
  94. Mosser DM (2003) The many faces of macrophage activation. J Leukoc Biol 73(2):209–212PubMedCrossRefGoogle Scholar
  95. Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8(12):958–969. doi:10.1038/nri2448 PubMedPubMedCentralCrossRefGoogle Scholar
  96. Murray PJ, Wynn TA (2011) Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 11(11):723–737. doi:10.1038/nri3073 PubMedPubMedCentralCrossRefGoogle Scholar
  97. Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, Gordon S, Hamilton JA, Ivashkiv LB, Lawrence T, Locati M, Mantovani A, Martinez FO, Mege JL, Mosser DM, Natoli G, Saeij JP, Schultze JL, Shirey KA, Sica A, Suttles J, Udalova I, van Ginderachter JA, Vogel SN, Wynn TA (2014) Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41(1):14–20. doi:10.1016/j.immuni.2014.06.008 PubMedPubMedCentralCrossRefGoogle Scholar
  98. Nathan C (2008) Metchnikoff’s legacy in 2008. Nat Immunol 9(7):695–698. doi:10.1038/ni0708-695 PubMedCrossRefGoogle Scholar
  99. Nathan C, Muller WA (2001) Putting the brakes on innate immunity: a regulatory role for CD200? Nat Immunol 2(1):17–19. doi:10.1038/83124 PubMedCrossRefGoogle Scholar
  100. Nichols SP, Koh A, Storm WL, Shin JH, Schoenfisch MH (2013) Biocompatible materials for continuous glucose monitoring devices. Chem Rev 113(4):2528–2549. doi:10.1021/cr300387j PubMedPubMedCentralCrossRefGoogle Scholar
  101. Nicolete R, dos Santos DF, Faccioli LH (2011) The uptake of PLGA micro or nanoparticles by macrophages provokes distinct in vitro inflammatory response. Int Immunopharmacol 11(10):1557–1563. doi:10.1016/j.intimp.2011.05.014 PubMedCrossRefGoogle Scholar
  102. O’Shea JJ, Murray PJ (2008) Cytokine signaling modules in inflammatory responses. Immunity 28(4):477–487. doi:10.1016/j.immuni.2008.03.002 PubMedPubMedCentralCrossRefGoogle Scholar
  103. Ogawara K, Furumoto K, Nagayama S, Minato K, Higaki K, Kai T, Kimura T (2004) Pre-coating with serum albumin reduces receptor-mediated hepatic disposition of polystyrene nanosphere: implications for rational design of nanoparticles. J Control Release 100(3):451–455. doi:10.1016/j.jconrel.2004.07.028 PubMedCrossRefGoogle Scholar
  104. Ogle ME, Segar CE, Sridhar S, Botchwey EA (2016) Monocytes and macrophages in tissue repair: implications for immunoregenerative biomaterial design. Exp Biol Med (Maywood) 241(10):1084–1097. doi:10.1177/1535370216650293 CrossRefGoogle Scholar
  105. Orringer DA, Koo YE, Chen T, Kopelman R, Sagher O, Philbert MA (2009) Small solutions for big problems: the application of nanoparticles to brain tumor diagnosis and therapy. Clin Pharmacol Ther 85(5):531–534. doi:10.1038/clpt.2008.296 PubMedPubMedCentralCrossRefGoogle Scholar
  106. Palmer JA, Abberton KM, Mitchell GM, Morrison WA (2014) Macrophage phenotype in response to implanted synthetic scaffolds: an immunohistochemical study in the rat. Cells Tissues Organs 199(2–3):169–183. doi:10.1159/000363693 PubMedCrossRefGoogle Scholar
  107. Parodi A, Quattrocchi N, van de Ven AL, Chiappini C, Evangelopoulos M, Martinez JO, Brown BS, Khaled SZ, Yazdi IK, Enzo MV, Isenhart L, Ferrari M, Tasciotti E (2013) Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nat Nanotechnol 8(1):61–68. doi:10.1038/nnano.2012.212 PubMedCrossRefGoogle Scholar
  108. Patel NR, Bole M, Chen C, Hardin CC, Kho AT, Mih J, Deng L, Butler J, Tschumperlin D, Fredberg JJ, Krishnan R, Koziel H (2012) Cell elasticity determines macrophage function. PLoS One 7(9):e41024. doi:10.1371/journal.pone.0041024 PubMedPubMedCentralCrossRefGoogle Scholar
  109. Phillips JM, Kao WJ (2005) Macrophage adhesion on gelatin-based interpenetrating networks grafted with PEGylated RGD. Tissue Eng 11(5–6):964–973. doi:10.1089/ten.2005.11.964 PubMedCrossRefGoogle Scholar
  110. Pugin J, Dunn I, Jolliet P, Tassaux D, Magnenat JL, Nicod LP, Chevrolet JC (1998) Activation of human macrophages by mechanical ventilation in vitro. Am J Physiol 275(6 Pt 1):L1040–L1050PubMedGoogle Scholar
  111. Qie Y, Yuan H, von Roemeling CA, Chen Y, Liu X, Shih KD, Knight JA, Tun HW, Wharen RE, Jiang W, Kim BY (2016) Surface modification of nanoparticles enables selective evasion of phagocytic clearance by distinct macrophage phenotypes. Sci Rep 6:26269. doi:10.1038/srep26269 PubMedPubMedCentralCrossRefGoogle Scholar
  112. Ratner BD, Bryant SJ (2004) Biomaterials: where we have been and where we are going. Annu Rev Biomed Eng 6:41–75. doi:10.1146/annurev.bioeng.6.040803.140027 PubMedCrossRefGoogle Scholar
  113. Refai AK, Textor M, Brunette DM, Waterfield JD (2004) Effect of titanium surface topography on macrophage activation and secretion of proinflammatory cytokines and chemokines. J Biomed Mater Res A 70(2):194–205. doi:10.1002/jbm.a.30075 PubMedCrossRefGoogle Scholar
  114. Resnick N, Gimbrone MA Jr (1995) Hemodynamic forces are complex regulators of endothelial gene expression. FASEB J 9(10):874–882PubMedGoogle Scholar
  115. Rich A, Harris AK (1981) Anomalous preferences of cultured macrophages for hydrophobic and roughened substrata. J Cell Sci 50:1–7PubMedGoogle Scholar
  116. Richards RG, Moriarty TF, Miclau T, McClellan RT, Grainger DW (2012) Advances in biomaterials and surface technologies. J Orthop Trauma 26(12):703–707. doi:10.1097/BOT.0b013e31826e37a2 PubMedCrossRefGoogle Scholar
  117. Roach P, Farrar D, Perry CC (2005) Interpretation of protein adsorption: surface-induced conformational changes. J Am Chem Soc 127(22):8168–8173. doi:10.1021/ja042898o PubMedCrossRefGoogle Scholar
  118. Rongioletti F, Cattarini G, Sottofattori E, Rebora A (2003) Granulomatous reaction after intradermal injections of hyaluronic acid gel. Arch Dermatol 139(6):815–816. doi:10.1001/archderm.139.6.815 PubMedCrossRefGoogle Scholar
  119. Rostam HM, Singh S, Salazar F, Magennis P, Hook A, Singh T, Vrana NE, Alexander MR, Ghaemmaghami AM (2016) The impact of surface chemistry modification on macrophage polarisation. Immunobiology. doi:10.1016/j.imbio.2016.06.010 PubMedGoogle Scholar
  120. Saino E, Focarete ML, Gualandi C, Emanuele E, Cornaglia AI, Imbriani M, Visai L (2011) Effect of electrospun fiber diameter and alignment on macrophage activation and secretion of proinflammatory cytokines and chemokines. Biomacromolecules 12(5):1900–1911. doi:10.1021/bm200248h PubMedCrossRefGoogle Scholar
  121. Salthouse TN (1984) Some aspects of macrophage behavior at the implant interface. J Biomed Mater Res 18(4):395–401. doi:10.1002/jbm.820180407 PubMedCrossRefGoogle Scholar
  122. Sanchez-Moreno P, Buzon P, Boulaiz H, Peula-Garcia JM, Ortega-Vinuesa JL, Luque I, Salvati A, Marchal JA (2015) Balancing the effect of corona on therapeutic efficacy and macrophage uptake of lipid nanocapsules. Biomaterials 61:266–278. doi:10.1016/j.biomaterials.2015.04.049 PubMedCrossRefGoogle Scholar
  123. Sanders JE, Stiles CE, Hayes CL (2000) Tissue response to single-polymer fibers of varying diameters: evaluation of fibrous encapsulation and macrophage density. J Biomed Mater Res 52(1):231–237PubMedCrossRefGoogle Scholar
  124. Sanders JE, Bale SD, Neumann T (2002) Tissue response to microfibers of different polymers: polyester, polyethylene, polylactic acid, and polyurethane. J Biomed Mater Res 62(2):222–227. doi:10.1002/jbm.10285 PubMedCrossRefGoogle Scholar
  125. Schutte RJ, Parisi-Amon A, Reichert WM (2009) Cytokine profiling using monocytes/macrophages cultured on common biomaterials with a range of surface chemistries. J Biomed Mater Res A 88(1):128–139. doi:10.1002/jbm.a.31863 PubMedPubMedCentralCrossRefGoogle Scholar
  126. Seong SY, Matzinger P (2004) Hydrophobicity: an ancient damage-associated molecular pattern that initiates innate immune responses. Nat Rev Immunol 4(6):469–478. doi:10.1038/nri1372 PubMedCrossRefGoogle Scholar
  127. Sharma G, Valenta DT, Altman Y, Harvey S, Xie H, Mitragotri S, Smith JW (2010) Polymer particle shape independently influences binding and internalization by macrophages. J Control Release 147(3):408–412. doi:10.1016/j.jconrel.2010.07.116 PubMedPubMedCentralCrossRefGoogle Scholar
  128. Shen M, Garcia I, Maier RV, Horbett TA (2004) Effects of adsorbed proteins and surface chemistry on foreign body giant cell formation, tumor necrosis factor alpha release and procoagulant activity of monocytes. J Biomed Mater Res A 70(4):533–541. doi:10.1002/jbm.a.30069 PubMedCrossRefGoogle Scholar
  129. Shyy JY, Lin MC, Han J, Lu Y, Petrime M, Chien S (1995) The cis-acting phorbol ester “12-O-tetradecanoylphorbol 13-acetate”-responsive element is involved in shear stress-induced monocyte chemotactic protein 1 gene expression. Proc Natl Acad Sci U S A 92(17):8069–8073PubMedPubMedCentralCrossRefGoogle Scholar
  130. Stein M, Keshav S, Harris N, Gordon S (1992) Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J Exp Med 176(1):287–292PubMedCrossRefGoogle Scholar
  131. Sunderkotter C, Steinbrink K, Goebeler M, Bhardwaj R, Sorg C (1994) Macrophages and angiogenesis. J Leukoc Biol 55(3):410–422PubMedGoogle Scholar
  132. Sussman EM, Halpin MC, Muster J, Moon RT, Ratner BD (2014) Porous implants modulate healing and induce shifts in local macrophage polarization in the foreign body reaction. Ann Biomed Eng 42(7):1508–1516. doi:10.1007/s10439-013-0933-0 PubMedCrossRefGoogle Scholar
  133. Valentin JE, Stewart-Akers AM, Gilbert TW, Badylak SF (2009) Macrophage participation in the degradation and remodeling of extracellular matrix scaffolds. Tissue Eng Part A 15(7):1687–1694. doi:10.1089/ten.tea.2008.0419 PubMedPubMedCentralCrossRefGoogle Scholar
  134. Vargas-Machuca I, Gonzalez-Guerra E, Angulo J, del Carmen FM, Martin L, Requena L (2006) Facial granulomas secondary to dermalive microimplants: report of a case with histopathologic differential diagnosis among the granulomas secondary to different injectable permanent filler materials. Am J Dermatopathol 28(2):173–177. doi:10.1097/ PubMedCrossRefGoogle Scholar
  135. Vasconcelos DP, Fonseca AC, Costa M, Amaral IF, Barbosa MA, Aguas AP, Barbosa JN (2013) Macrophage polarization following chitosan implantation. Biomaterials 34(38):9952–9959. doi:10.1016/j.biomaterials.2013.09.012 PubMedCrossRefGoogle Scholar
  136. Veiseh O, Doloff JC, Ma M, Vegas AJ, Tam HH, Bader AR, Li J, Langan E, Wyckoff J, Loo WS, Jhunjhunwala S, Chiu A, Siebert S, Tang K, Hollister-Lock J, Aresta-Dasilva S, Bochenek M, Mendoza-Elias J, Wang Y, Qi M, Lavin DM, Chen M, Dholakia N, Thakrar R, Lacik I, Weir GC, Oberholzer J, Greiner DL, Langer R, Anderson DG (2015) Size- and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates. Nat Mater 14(6):643–651. doi:10.1038/nmat4290 PubMedPubMedCentralCrossRefGoogle Scholar
  137. Vijaya Bhaskar TB, Ma N, Lendlein A, Roch T (2015) The interaction of human macrophage subsets with silicone as a biomaterial. Clin Hemorheol Microcirc 61(2):119–133. doi:10.3233/CH-151991 PubMedCrossRefGoogle Scholar
  138. Vogler EA (2012) Protein adsorption in three dimensions. Biomaterials 33(5):1201–1237. doi:10.1016/j.biomaterials.2011.10.059 PubMedCrossRefGoogle Scholar
  139. Vroman L (1962) Effect of absorbed proteins on the wettability of hydrophilic and hydrophobic solids. Nature 196:476–477PubMedCrossRefGoogle Scholar
  140. Vroman L, Lukosevicius A (1964) Ellipsometer recordings of changes in optical thickness of adsorbed films associated with surface activation of blood clotting. Nature 204:701–703PubMedCrossRefGoogle Scholar
  141. Walkey CD, Olsen JB, Guo H, Emili A, Chan WC (2012) Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J Am Chem Soc 134(4):2139–2147. doi:10.1021/ja2084338 PubMedCrossRefGoogle Scholar
  142. Wang X, Ding B, Li B (2013) Biomimetic electrospun nanofibrous structures for tissue engineering. Mater Today (Kidlington) 16(6):229–241. doi:10.1016/j.mattod.2013.06.005 CrossRefGoogle Scholar
  143. Ward WK, Slobodzian EP, Tiekotter KL, Wood MD (2002) The effect of microgeometry, implant thickness and polyurethane chemistry on the foreign body response to subcutaneous implants. Biomaterials 23(21):4185–4192PubMedCrossRefGoogle Scholar
  144. Wehner S, Buchholz BM, Schuchtrup S, Rocke A, Schaefer N, Lysson M, Hirner A, Kalff JC (2010) Mechanical strain and TLR4 synergistically induce cell-specific inflammatory gene expression in intestinal smooth muscle cells and peritoneal macrophages. Am J Physiol Gastrointest Liver Physiol 299(5):G1187–G1197. doi:10.1152/ajpgi.00452.2009 PubMedCrossRefGoogle Scholar
  145. Werfel J, Krause S, Bischof AG, Mannix RJ, Tobin H, Bar-Yam Y, Bellin RM, Ingber DE (2013) How changes in extracellular matrix mechanics and gene expression variability might combine to drive cancer progression. PLoS One 8(10):e76122. doi:10.1371/journal.pone.0076122 PubMedPubMedCentralCrossRefGoogle Scholar
  146. Wilson CJ, Clegg RE, Leavesley DI, Pearcy MJ (2005) Mediation of biomaterial-cell interactions by adsorbed proteins: a review. Tissue Eng 11(1–2):1–18. doi:10.1089/ten.2005.11.1 PubMedCrossRefGoogle Scholar
  147. Winter GD (1974) Transcutaneous implants: reactions of the skin-implant interface. J Biomed Mater Res 8(3):99–113. doi:10.1002/jbm.820080311 PubMedCrossRefGoogle Scholar
  148. Wojciak-Stothard B, Curtis A, Monaghan W, MacDonald K, Wilkinson C (1996) Guidance and activation of murine macrophages by nanometric scale topography. Exp Cell Res 223(2):426–435. doi:10.1006/excr.1996.0098 PubMedCrossRefGoogle Scholar
  149. Wolfram D, Tzankov A, Piza-Katzer H (2006) Surgery for foreign body reactions due to injectable fillers. Dermatology 213(4):300–304. doi:10.1159/000096193 PubMedCrossRefGoogle Scholar
  150. Xu LC, Siedlecki CA (2007) Effects of surface wettability and contact time on protein adhesion to biomaterial surfaces. Biomaterials 28(22):3273–3283. doi:10.1016/j.biomaterials.2007.03.032 PubMedPubMedCentralCrossRefGoogle Scholar
  151. Yan Y, Gause KT, Kamphuis MM, Ang CS, O’Brien-Simpson NM, Lenzo JC, Reynolds EC, Nice EC, Caruso F (2013) Differential roles of the protein corona in the cellular uptake of nanoporous polymer particles by monocyte and macrophage cell lines. ACS Nano 7(12):10960–10970. doi:10.1021/nn404481f PubMedCrossRefGoogle Scholar
  152. Zaveri TD, Lewis JS, Dolgova NV, Clare-Salzler MJ, Keselowsky BG (2014) Integrin-directed modulation of macrophage responses to biomaterials. Biomaterials 35(11):3504–3515. doi:10.1016/j.biomaterials.2014.01.007 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Biopharmaceutical SciencesUniversity of IllinoisChicagoUSA
  2. 2.Department of BioengineeringUniversity of IllinoisChicagoUSA
  3. 3.Department of Chemical EngineeringUniversity of IllinoisChicagoUSA
  4. 4.Department of Ophthalmology and Visual SciencesUniversity of IllinoisChicagoUSA

Personalised recommendations