Advertisement

Sequential Monte Carlo Methods in Random Intercept Models for Longitudinal Data

  • Danilo AlvaresEmail author
  • Carmen Armero
  • Anabel Forte
  • Nicolas Chopin
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 194)

Abstract

Longitudinal modelling is common in the field of Biostatistical research. In some studies, it becomes mandatory to update posterior distributions based on new data in order to perform inferential process on-line. In such situations, the use of posterior distribution as the prior distribution in the new application of the Bayes’ theorem is sensible. However, the analytic form of the posterior distribution is not always available and we only have an approximated sample of it, thus making the process “not-so-easy”. Equivalent inferences could be obtained through a Bayesian inferential process based on the set that integrates the old and new data. Nevertheless, this is not always a real alternative, because it may be computationally very costly in terms of both time and resources. This work uses the dynamic characteristics of sequential Monte Carlo methods for “static” setups in the framework of longitudinal modelling scenarios. We used this methodology in real data through a random intercept model.

Keywords

Bayesian analysis IBIS algorithm Marginal likelihood Particle filter 

Notes

Acknowledgements

Alvares is partially supported by the research grants Coordination for the Improvement of Higher Level Personnel (BEX: 0047/13-9), Brazil. Armero and Forte are partially funded by MTM2016-77501-P from the Spanish Ministry of Economy and Competitiveness and ACOMP/2015/202 from the Generalitat Valenciana. Chopin is partially funded by Labex ECODEC ANR-11-LABEX-0047 grant from the Agence Nationale de la Recherche.

References

  1. 1.
    Arulampalam, M.S., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particles filters for online nonlinear/non-Gaussian Bayesian tracking. Proc. IEEE Trans. Signal Process. 50(2), 174–188 (2002)CrossRefGoogle Scholar
  2. 2.
    Ba-Ngu, V., Ba-Tuong, V., Sumeetpal, S.: Sequential Monte Carlo methods for static parameter estimation in random set models. In: Proceedings of the Intelligent Sensors, Sensor Networks and Information Processing Conference, pp. 313–318 (2004)Google Scholar
  3. 3.
    Chopin, N.: A sequential particle filter for static models. Biometrika 89(3), 539–551 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Diggle, P.J., Heagerty, P., Liang, K.-Y., Zeger, S.L.: Analysis of Longitudinal Data, 2nd edn. Oxford University Press, New York (2002)zbMATHGoogle Scholar
  5. 5.
    Doucet, A., Freitas, N., Gordon, N.: Sequential Monte Carlo Methods in Practice. Statistics for Engineering and Information Science. Springer, New York (2001)CrossRefzbMATHGoogle Scholar
  6. 6.
    Gelman, A., Carlin, J., Stern, H., Dunson, D., Vehtari, A., Rubin, D.: Bayesian Data Analysis. Texts in Statistical Science, 3rd edn. Chapman and Hall/CRC, London (2013)zbMATHGoogle Scholar
  7. 7.
    Gibbons, R.D., Hedeker, D., DuToit, S.: Advances in analysis of longitudinal data. Annu. Rev. Clin. Psychol. 6, 79–107 (2010)CrossRefGoogle Scholar
  8. 8.
    Gilks, W.R., Berzuini, C.: Following a moving target: Monte Carlo inference for dynamic Bayesian models. J. R. Stat. Soc. Ser. B 63(1), 127–146 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Gordon, N.J., Salmond, D.J., Smith, A.F.M.: Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proc. Radar Signal Process. 140(2), 107–113 (1993)CrossRefGoogle Scholar
  10. 10.
    Laird, N.M., Ware, J.H.: Random-effects models for longitudinal data. Biometrics 38(4), 963–974 (1982)CrossRefzbMATHGoogle Scholar
  11. 11.
    Lee, Y., Nelder, J.A.: Likelihood for random-effect models. Stat. Oper. Res. Trans. 29(2), 141–164 (2005)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Lunn, D.J., Thomas, A., Best, N., Spiegelhalter, D.: Winbugs - a Bayesian modelling framework: concepts, structure, and extensibility. Stat. Comput. 10, 325–337 (2000)CrossRefGoogle Scholar
  13. 13.
    Rizopoulos, D.: Joint Models for Longitudinal and Time-to-Event Data: With Applications in R. Chapman and Hall/CRC, Boca Raton (2012)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Danilo Alvares
    • 1
    Email author
  • Carmen Armero
    • 1
  • Anabel Forte
    • 1
  • Nicolas Chopin
    • 2
  1. 1.Universitat de València - Calle Dr. Moliner 50BurjassotSpain
  2. 2.CREST-ENSAE and HEC ParisMalakoffFrance

Personalised recommendations