Purely Catalytic P Systems over Integers and Their Generative Power

  • Artiom Alhazov
  • Omar Belingheri
  • Rudolf Freund
  • Sergiu Ivanov
  • Antonio E. Porreca
  • Claudio Zandron
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10105)

Abstract

We further investigate the computing power of the recently introduced P systems with \(\mathbb Z\)-multisets (also known as hybrid sets) as generative devices. These systems apply catalytic rules in the maximally parallel way, even consuming absent non-catalysts, thus effectively generating vectors of arbitrary (not just non-negative) integers. The rules may only be made inapplicable by dissolution rules. However, this releases the catalysts into the immediately outer region, where new rules might become applicable to them. We discuss the generative power of this model. Finally, we consider the variant with mobile catalysts.

References

  1. 1.
    Alhazov, A., Aman, B., Freund, R., Păun, G.: Matter and anti-matter in membrane systems. In: Jürgensen, H., Karhumäki, J., Okhotin, A. (eds.) DCFS 2014. LNCS, vol. 8614, pp. 65–76. Springer, Heidelberg (2014). doi:10.1007/978-3-319-09704-6_7 Google Scholar
  2. 2.
    Alhazov, A., Belingheri, O., Freund, R., Ivanov, S., Porreca, A.E., Zandron, C.: Semilinear sets, register machines, and integer vector addition (P) systems. In: Leporati, A., Zandron, C. (eds.) Proceedings of the Seventeenth International Conference on Membrane Computing (CMC17), 25–29 July 2016, Milan, Italy, pp. 39–56. Università degli Studi di Milano-Bicocca (2016)Google Scholar
  3. 3.
    Belingheri, O., Porreca, A.E., Zandron, C.: P systems with hybrid sets. In: Gheorghe, M., Konur, S. (eds.) Proceedings of the Workshop on Membrane Computing WMC 2016, Manchester (UK), 11–15 July 2016. School of Electrical Engineering and Computer Science, University of Bradford, Bradford, BD7 1DP, UK. Technical Report UB-20160819-1, pp. 34–41. University of Bradford (2016)Google Scholar
  4. 4.
    Carette, J., Sexton, A.P., Sorge, V., Watt, S.M.: Symbolic domain decomposition. In: Autexier, S., Calmet, J., Delahaye, D., Ion, P.D.F., Rideau, L., Rioboo, R., Sexton, A.P. (eds.) CICM 2010. LNCS (LNAI), vol. 6167, pp. 172–188. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14128-7_16 CrossRefGoogle Scholar
  5. 5.
    Freund, R., Ibarra, O., Păun, G., Yen, H.C.: Matrix languages, register machines, vector addition systems. In: Naranjo, M.A.G., Riscos-Núñez, A., Romero-Campero, F.J., Sburlan, D. (eds.) Third Brainstorming Week on Membrane Computing, pp. 155–167. Fénix Editora, Sevilla, España (2005)Google Scholar
  6. 6.
    Freund, R., Ivanov, S., Verlan, S.: P systems with generalized multisets over totally ordered abelian groups. In: Rozenberg, G., Salomaa, A., Sempere, J.M., Zandron, C. (eds.) CMC 2015. LNCS, vol. 9504, pp. 117–136. Springer, Heidelberg (2015). doi:10.1007/978-3-319-28475-0_9 CrossRefGoogle Scholar
  7. 7.
    Greibach, S.A.: Remarks on blind and partially blind one-way multicounter machines. Theoret. Comput. Sci. 7(3), 311–324 (1978)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Haase, C., Halfon, S.: Integer vector addition systems with states. In: Ouaknine, J., Potapov, I., Worrell, J. (eds.) RP 2014. LNCS, vol. 8762, pp. 112–124. Springer, Heidelberg (2014). doi:10.1007/978-3-319-11439-2_9 Google Scholar
  9. 9.
    Hopcroft, J., Pansiot, J.J.: On the reachability problem for 5-dimensional vector addition systems. Theoret. Comput. Sci. 8(2), 135–159 (1979)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Krishna, S.N., Păun, A.: Results on catalytic and evolution-communication P systems. New Gener. Comput. 22(4), 377–394 (2004)CrossRefMATHGoogle Scholar
  11. 11.
    Păun, G.: Some quick research topics. http://www.gcn.us.es/files/OpenProblems_bwmc15.pdf
  12. 12.
    Păun, G.: Computing with membranes. J. Comput. Syst. Sci. 61, 108–143 (1998)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Păun, G., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane Computing. Oxford University Press Inc., New York (2010)CrossRefMATHGoogle Scholar
  14. 14.
    The P Systems Website: http://ppage.psystems.eu

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Artiom Alhazov
    • 1
  • Omar Belingheri
    • 2
  • Rudolf Freund
    • 3
  • Sergiu Ivanov
    • 4
  • Antonio E. Porreca
    • 2
  • Claudio Zandron
    • 2
  1. 1.Academy of Sciences of MoldovaInstitute of Mathematics and Computer ScienceChişinăuMoldova
  2. 2.Dipartimento di Informatica, Sistemistica e ComunicazioneUniversità Degli Studi di Milano-BicoccaMilanoItaly
  3. 3.Faculty of InformaticsTU WienViennaAustria
  4. 4.Université Paris EstChamps-sur-MarneFrance

Personalised recommendations