Advertisement

Simulating R Systems by P Systems

  • Artiom Alhazov
  • Bogdan Aman
  • Rudolf Freund
  • Sergiu Ivanov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10105)

Abstract

We show multiple ways of how to simulate R systems by non-cooperative P systems with atomic control by promoters and/or inhibitors, or with matter/antimatter annihilation rules, with a slowdown by a constant factor only. The descriptional complexity of the simulating P systems is also linear with respect to that of the simulated R system. All constants depend on how general the model of R systems is, as well as on the chosen control ingredients of the P systems. Special attention is paid to the differences in the mode of rule application in these models.

References

  1. 1.
    Alhazov, A.: P systems without multiplicities of symbol-objects. Inf. Process. Lett. 100(3), 124–129 (2006). http://dx.doi.org/10.1016/j.ipl.2005.01.017 MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Alhazov, A., Aman, B., Freund, R.: P systems with anti-matter. In: Gheorghe, M., Rozenberg, G., Salomaa, A., Sosík, P., Zandron, C. (eds.) CMC 2014. LNCS, vol. 8961, pp. 66–85. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-14370-5_5 CrossRefGoogle Scholar
  3. 3.
    Alhazov, A., Cojocaru, S., Colesnicov, A., Malahov, L., Petic, M.: A P system for annotation of romanian affixes. In: Alhazov, A., Cojocaru, S., Gheorghe, M., Rogozhin, Y., Rozenberg, G., Salomaa, A. (eds.) CMC 2013. LNCS, vol. 8340, pp. 80–87. Springer, Heidelberg (2014). doi: 10.1007/978-3-642-54239-8_7 CrossRefGoogle Scholar
  4. 4.
    Alhazov, A., Freund, R.: Asynchronous and maximally parallel deterministic controlled non-cooperative P systems characterize NFIN and coNFIN. In: Csuhaj-Varjú, E., Gheorghe, M., Rozenberg, G., Salomaa, A., Vaszil, G. (eds.) CMC 2012. LNCS, vol. 7762, pp. 101–111. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-36751-9_8 CrossRefGoogle Scholar
  5. 5.
    Brijder, R., Ehrenfeucht, A., Main, M.G., Rozenberg, G.: A tour of reaction systems. Int. J. Found. Comput. Sci. 22(7), 1499–1517 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Ehrenfeucht, A., Rozenberg, G.: Reaction systems. Fundamenta Informaticae 75(1), 263–280 (2007)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Margenstern, M., Rogozhin, Y., Verlan, S.: Time-varying distributed H systems with parallel computations: the problem is solved. In: Chen, J., Reif, J. (eds.) DNA 2003. LNCS, vol. 2943, pp. 48–54. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-24628-2_6 CrossRefGoogle Scholar
  8. 8.
    Păun, G.: Computing with membranes. J. Comput. Syst. Sci. 61, 108–143 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Păun, G.: DNA computing based on splicing: universality results. Theor. Comput. Sci. 231(2), 275–296 (2000). https://dx.doi.org/10.1016/S0304-3975(99)00104–8 MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Păun, G., Pérez-Jiménez, M.J.: Towards bridging two cell-inspired models: P systems and R systems. Theor. Comput. Sci. 429, 258–264 (2012). http://dx.doi.org/10.1016/j.tcs.2011.12.046 MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Păun, G., Rozenberg, G., Salomaa, A.: Computing by splicing. Theor. Comput. Sci. 168(2), 321–336 (1996). https://dx.doi.org/10.1016/S0304-3975(96)00082–5 MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Păun, G., Rozenberg, G., Salomaa, A.: DNA Computing - New Computing Paradigms. Texts in Theoretical Computer Science. An EATCS Series. Springer, Heidelberg (1998). http://dx.doi.org/10.1007/978-3-662-03563-4 zbMATHGoogle Scholar
  13. 13.
    Păun, G., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane Computing. Oxford University Press Inc., New York (2010)CrossRefzbMATHGoogle Scholar
  14. 14.
    Sburlan, D.: Further results on P systems with promoters/inhibitors. Int. J. Found. Comput. Sci. 17(1), 205–221 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Artiom Alhazov
    • 1
  • Bogdan Aman
    • 2
  • Rudolf Freund
    • 3
  • Sergiu Ivanov
    • 4
  1. 1.Institute of Mathematics and Computer Science, Academy of Sciences of MoldovaChişinăuMoldova
  2. 2.Romanian Academy, Institute of Computer ScienceIaşiRomania
  3. 3.Faculty of InformaticsTU WienViennaAustria
  4. 4.Université Paris EstParisFrance

Personalised recommendations