Revising the Membrane Computing Model for Byzantine Agreement

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10105)

Abstract

We refine our earlier version of P systems with complex symbols. The new version, called cP systems, enables the creation and manipulation of high-level data structures which are typical in high-level languages, such as: relations (graphs), associative arrays, lists, trees. We assess these capabilities by attempting a revised version of our previously best solution for the Byzantine agreement problem – a famous problem in distributed algorithms, with non-trivial data structures and algorithms. In contrast to our previous solutions, which use a greater than exponential number of symbols and rules, the new solution uses a fixed sized alphabet and ruleset, independent of the problem size. The new ruleset follows closely the conceptual description of the algorithm. This revised framework opens the way to further extensions, which may bring P systems closer to the conceptual Actor model.

Keywords

Distributed algorithms Byzantine agreement EIG trees Membrane computing P systems cP systems Inter-cell parallelism Intra-cell parallelism Prolog terms and unification Complex symbols Cells with subcells Generic rules Synchronous and asynchronous models Actor model 

Notes

Acknowledgments

We are deeply indebted to the co-authors of our former studies on the Byzantine agreement and to the anonymous reviewers, for their most valuable comments and suggestions.

References

  1. 1.
    Abd-El-Malek, M., Ganger, G.R., Goodson, G.R., Reiter, M.K., Wylie, J.J.: Fault-scalable Byzantine fault-tolerant services. In: Herbert, A., Birman, K.P. (eds.) SOSP, pp. 59–74. ACM (2005)Google Scholar
  2. 2.
    Ben-Or, M., Hassidim, A.: Fast quantum Byzantine agreement. In: Gabow, H.N., Fagin, R. (eds.) STOC, pp. 481–485. ACM (2005)Google Scholar
  3. 3.
    Cachin, C., Kursawe, K., Shoup, V.: Random oracles in constantinople: practical asynchronous Byzantine agreement using cryptography. J. Cryptol. 18(3), 219–246 (2005)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Castro, M., Liskov, B.: Practical Byzantine fault tolerance and proactive recovery. ACM Trans. Comput. Syst. 20(4), 398–461 (2002)CrossRefGoogle Scholar
  5. 5.
    Ciobanu, G.: Distributed algorithms over communicating membrane systems. Biosystems 70(2), 123–133 (2003)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Ciobanu, G., Desai, R., Kumar, A.: Membrane systems and distributed computing. In: PĂun, G., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) WMC 2002. LNCS, vol. 2597, pp. 187–202. Springer, Heidelberg (2003). doi:10.1007/3-540-36490-0_12 CrossRefGoogle Scholar
  7. 7.
    Dinneen, M.J., Kim, Y.-B., Nicolescu, R.: A faster P solution for the Byzantine agreement problem. In: Gheorghe, M., Hinze, T., Păun, G., Rozenberg, G., Salomaa, A. (eds.) CMC 2010. LNCS, vol. 6501, pp. 175–197. Springer, Heidelberg (2010). doi:10.1007/978-3-642-18123-8_15 CrossRefGoogle Scholar
  8. 8.
    Dinneen, M.J., Kim, Y.B., Nicolescu, R.: A faster P solution for the Byzan- tine agreement problem. Report CDMTCS-388, Centre for Discrete Mathematics and Theoretical Computer Science, The University of Auckland, Auckland, New Zealand, July 2010. http://www.cs.auckland.ac.nz/CDMTCS/researchreports/388-DKN.pdf
  9. 9.
    Dinneen, M.J., Kim, Y.B., Nicolescu, R.: P systems and the Byzantine agreement. J. Logic Algebraic Program. 79, 334–349 (2010)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Dinneen, M.J., Kim, Y.B., Nicolescu, R.: P systems and the Byzantine agreement. Report CDMTCS-375, Centre for Discrete Mathematics and Theoretical Computer Science, The University of Auckland, Auckland, New Zealand, January 2010. http://www.cs.auckland.ac.nz/CDMTCS//researchreports/375Byzantine.pdf
  11. 11.
    Dinneen, M.J., Kim, Y.B., Nicolescu, R.: A faster P solution for the Byzantine agreement problem. In: Gheorghe, M., Păun, G., Hinze, T. (eds.) Eleventh International Conference on Membrane Computing (CMC11), 24–27 August 2010, Friedrich Schiller University, Jena, Germany, pp. 167–192. Pro Business GmbH, Berlin (2015)Google Scholar
  12. 12.
    Lamport, L., Shostak, R.E., Pease, M.C.: The Byzantine generals problem. ACM Trans. Program. Lang. Syst. 4(3), 382–401 (1982)CrossRefMATHGoogle Scholar
  13. 13.
    Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann Publishers Inc., San Francisco (1996)MATHGoogle Scholar
  14. 14.
    Martin, J.P., Alvisi, L.: Fast Byzantine consensus. IEEE Trans. Dependable Sec. Comput. 3(3), 202–215 (2006)CrossRefGoogle Scholar
  15. 15.
    Nicolescu, R.: Parallel and distributed algorithms in P systems. In: Gheorghe, M., Păun, G., Rozenberg, G., Salomaa, A., Verlan, S. (eds.) CMC 2011. LNCS, vol. 7184, pp. 35–50. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28024-5_4 CrossRefGoogle Scholar
  16. 16.
    Nicolescu, R.: Parallel thinning with complex objects and actors. In: Gheorghe, M., Rozenberg, G., Salomaa, A., Sosík, P., Zandron, C. (eds.) CMC 2014. LNCS, vol. 8961, pp. 330–354. Springer, Heidelberg (2014). doi:10.1007/978-3-319-14370-5_21 Google Scholar
  17. 17.
    Nicolescu, R.: Structured grid algorithms modelled with complex objects. In: Rozenberg, G., Salomaa, A., Sempere, J.M., Zandron, C. (eds.) CMC 2015. LNCS, vol. 9504, pp. 321–337. Springer, Heidelberg (2015). doi:10.1007/978-3-319-28475-0_22 CrossRefGoogle Scholar
  18. 18.
    Nicolescu, R., Dinneen, M.J., Kim, Y.B.: Towards structured modelling with hyper- dag P systems. Int. J. Comput. Commun. Control 2, 209–222 (2010)Google Scholar
  19. 19.
    Nicolescu, R., Ipate, F., Wu, H.: Programming P systems with complex objects. In: Alhazov, A., Cojocaru, S., Gheorghe, M., Rogozhin, Y., Rozenberg, G., Salomaa, A. (eds.) CMC 2013. LNCS, vol. 8340, pp. 280–300. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54239-8_20 CrossRefGoogle Scholar
  20. 20.
    Nicolescu, R., Ipate, F., Wu, H.: Towards high-level P systems programming using complex objects. In: Alhazov, A., Cojocaru, S., Gheorghe, M., Rogozhin, Y. (eds.) Proceedings of the 14th International Conference on Membrane Computing, CMC14, Chişinău, Moldova, 20–23 August 2013, pp. 255–276. Institute of Mathematics and Computer Science, Academy of Sciences of Moldova, Chişinău (2013)Google Scholar
  21. 21.
    Nicolescu, R., Wu, H.: Complex objects for complex applications. Rom. J. Inf. Sci. Technol. 17(1), 46–62 (2014)Google Scholar
  22. 22.
    Pease, M.C., Shostak, R.E., Lamport, L.: Reaching agreement in the presence of faults. J. ACM 27(2), 228–234 (1980)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Păun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane Computing. Oxford University Press, Inc., New York (2010)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of AucklandAucklandNew Zealand

Personalised recommendations