Advertisement

Shallow Non-confluent P Systems

  • Alberto Leporati
  • Luca Manzoni
  • Giancarlo Mauri
  • Antonio E. Porreca
  • Claudio Zandron
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10105)

Abstract

We prove that non-confluent (i.e., strongly nondeterministic) P systems with active membranes working in polynomial time are able to simulate polynomial-space nondeterministic Turing machines, and thus to solve all \({\mathbf{PSPACE }}\) problems. Unlike the confluent case, this result holds for shallow P systems. In particular, depth 1 (i.e., only one membrane nesting level and using elementary membrane division only) already suffices, and neither dissolution nor send-in communication rules are needed.

References

  1. 1.
    Alhazov, A., Freund, R.: On the efficiency of P systems with active membranes and two polarizations. In: Mauri, G., Păun, G., Pérez-Jiménez, M.J., Rozenberg, G., Salomaa, A. (eds.) WMC 2004. LNCS, vol. 3365, pp. 146–160. Springer, Heidelberg (2005). doi: 10.1007/978-3-540-31837-8_8 CrossRefGoogle Scholar
  2. 2.
    Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., Zandron, C.: Simulating elementary active membranes. In: Gheorghe, M., Rozenberg, G., Salomaa, A., Sosík, P., Zandron, C. (eds.) CMC 2014. LNCS, vol. 8961, pp. 284–299. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-14370-5_18 Google Scholar
  3. 3.
    Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., Zandron, C.: Membrane division, oracles, and the counting hierarchy. Fundam. Informaticae 138(1–2), 97–111 (2015)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., Zandron, C.: Monodirectional P systems. In: Macìas-Ramos, L.F., Păun, G., Riscos-Núñez, A., Valencia-Cabrera, L. (eds.) Proceedings of the 13th Brainstorming Week on Membrane Computing, pp. 207–226. Fénix Editora (2015)Google Scholar
  5. 5.
    Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., Zandron, C.: Tissue P systems can be simulated efficiently with counting oracles. In: Rozenberg, G., Salomaa, A., Sempere, J.M., Zandron, C. (eds.) CMC 2015. LNCS, vol. 9504, pp. 251–261. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-28475-0_17 CrossRefGoogle Scholar
  6. 6.
    Murphy, N., Woods, D.: The computational power of membrane systems under tight uniformity conditions. Nat. Comput. 10(1), 613–632 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Pan, L., Pérez-Jiménez, M.J.: Computational complexity of tissue-like P systems. J. Complex. 26(3), 296–315 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Boston (1993)zbMATHGoogle Scholar
  9. 9.
    Păun, G.: P systems with active membranes: attacking NP-complete problems. J. Autom. Lang. Comb. 6(1), 75–90 (2001)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Pérez-Jiménez, M.J., Romero-Jiménez, A., Sancho-Caparrini, F.: Complexity classes in models of cellular computing with membranes. Nat. Comput. 2(3), 265–284 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Porreca, A.E., Mauri, G., Zandron, C.: Non-confluence in divisionless P systems with active membranes. Theor. Comput. Sci. 411(6), 878–887 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Păun, G., Pérez-Jiménez, M.J., Riscos Núñez, A.: Tissue P systems with cell division. Int. J. Comput. Commun. Control 3(3), 295–303 (2008)CrossRefGoogle Scholar
  13. 13.
    Sosík, P.: The computational power of cell division in P systems: beating down parallel computers? Nat. Comput. 2(3), 287–298 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Sosík, P., Rodríguez-Patón, A.: Membrane computing and complexity theory: a characterization of PSPACE. J. Comput. Syst. Sci. 73(1), 137–152 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Zandron, C., Ferretti, C., Mauri, G.: Solving NP-complete problems using P systems with active membranes. In: Antoniou, I., Calude, C.S., Dinneen, M.J. (eds.) UMC’2K. DISCMATH, pp. 289–301. Springer, Heidelberg (2001). doi: 10.1007/978-1-4471-0313-4_21 Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Alberto Leporati
    • 1
  • Luca Manzoni
    • 1
  • Giancarlo Mauri
    • 1
  • Antonio E. Porreca
    • 1
  • Claudio Zandron
    • 1
  1. 1.Dipartimento di Informatica, Sistemistica e ComunicazioneUniversità degli Studi di Milano-BicoccaMilanoItaly

Personalised recommendations