Phylogenomics pp 195-211 | Cite as

Rare Genomic Changes

  • Christoph Bleidorn


Sequence-based phylogenetic analyses can be biased by different sources of errors. Rare genomic changes constitute an interesting additional phylogenetic marker to test or propose hypotheses of evolutionary relationships. In difference to amino acid or nucleotide substitutions, these characters do not evolve clocklike. Several different marker systems have been explored in their value to provide additional synapomorphies for the support of monophyletic groups. Genome-level characters used include absence/presence patterns of mobile elements, microRNAs and introns. Moreover, gene order rearrangement and changes in the genetic code have been analysed to solve phylogenetic problems. Most promising has been a type of mobile elements known as retrotransposons, as due to their copy-and-paste mechanism and their nearly neutral evolution, they are close to a perfect phylogenetic marker. Only low levels of true convergency are reported for retrotransposons; however, in case of rapid radiations, high levels of lineage sorting can become apparent. These markers were successfully used in reconstructing bird or mammalian phylogenies, even though deeper relationships with divergences beyond an age of 50 million years might be only difficult or impossible to tackle. MicroRNAs showed a bigger potential to resolve deep phylogenies. These small RNAs involved in the regulation of gene expression are highly conserved across taxa and can be found in plants and animals. Especially, deep animal phylogeny has been investigated using microRNAs. However, convergent loss seems to be more frequent than previously assumed, thereby complicating analyses, which can be alleviated by using explicit evolutionary models. The usefulness of absence/presence patterns of introns, which are typically interrupting the coding sequences in eukaryotic genomes, has been established for some phylogenetic problems. Even though intron positions across eukaryotes are conserved, high levels of intron gain and intron loss are biasing analyses. A special case of intron markers are so-called near intron pairs, which seem to be more promising as a phylogenetic character. The historically oldest genome-level character used to unravel evolutionary relationships is the order of genes in the genome. Genes are coded on both strands of the DNA molecule, and several mechanisms (inversion, transposition, tandem duplication random loss, translocation, fusion, fission) can result in the rearrangement of the ancestral order. Most phylogenetic studies concentrated on gene order changes in unichromosomal organellar genomes, which due to their limited size were easier to access, even without next-generation sequencing. Gene order can be analysed either using distance methods or by coding all adjacent pairs into a character matrix to be analysed by parsimony or likelihood methods.


Gene Order Mobile Element Incomplete Lineage Sorting Phylogenetic Marker Intron Loss 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abascal F, Posada D, Zardoya R (2012) The evolution of the mitochondrial genetic code in arthropods revisited. Mitochondr DNA 23:84–91CrossRefGoogle Scholar
  2. Abascal F, Zardoya R, Posada D (2006) GenDecoder: genetic code prediction for metazoan mitochondria. Nucleic Acids Res 34:W389–W393PubMedPubMedCentralCrossRefGoogle Scholar
  3. Aguado MT, Glasby CJ, Schroeder PC, Weigert A, Bleidorn C (2015) The making of a branching annelid: an analysis of complete mitochondrial genome and ribosomal data of Ramisyllis multicaudata. Sci Rep 5:12072PubMedPubMedCentralCrossRefGoogle Scholar
  4. Barrell BG, Bankier AT, Drouin J (1979) A different genetic code in human mitochondria. Nature 282:189–194PubMedCrossRefGoogle Scholar
  5. Bernt M, Braband A, Schierwater B, Stadler PF (2013) Genetic aspects of mitochondrial genome evolution. Mol Phylogenet Evol 69:328–338PubMedCrossRefGoogle Scholar
  6. Bernt M, Merkle D, Ramsch K, Fritzsch G, Perseke M, Bernhard D, Schlegel M, Stadler PF, Middendorf M (2007) CREx: inferring genomic rearrangements based on common intervals. Bioinformatics 23:2957–2958PubMedCrossRefGoogle Scholar
  7. Blanchette M, Bourque G, Sankoff D (1997) Breakpoint phylogenies. Genome Inform Ser Workshop Genome Inform 8:25–34PubMedGoogle Scholar
  8. Bleidorn C, Eeckhaut I, Podsiadlowski L, Schult N, McHugh D, Halanych KM, Milinkovitch MC, Tiedemann R (2007) Mitochondrial genome and nuclear sequence data support Myzostomida as part of the annelid radiation. Mol Biol Evol 24:1690–1701PubMedCrossRefGoogle Scholar
  9. Boore JL (1999) Animal mitochondrial genomes. Nucleic Acids Res 27:1767–1780PubMedPubMedCentralCrossRefGoogle Scholar
  10. Boore JL (2006) The use of genome-level characters for phylogenetic reconstruction. Trends Ecol Evol 21:439–446PubMedCrossRefGoogle Scholar
  11. Boore JL, Brown WM (1998) Big trees from little genomes: mitochondrial gene order as a phylogenetic tool. Curr Opin Genet Dev 8:668–674PubMedCrossRefGoogle Scholar
  12. Boore JL, Collins T, Stanton D, Daehler L, Brown WM (1995) Deducing the pattern of arthropod phylogeny from mitochondrial DNA rearrangements. Nature 376:163–165PubMedCrossRefGoogle Scholar
  13. Boore JL, Lavrov DV, Brown WM (1998) Gene translocation links insects and crustaceans. Nature 392:667–668PubMedCrossRefGoogle Scholar
  14. Bourque G, Pevzner PA (2002) Genome-scale evolution: reconstructing gene orders in the ancestral species. Genome Res 12:26–36PubMedPubMedCentralGoogle Scholar
  15. Campbell LI, Rota-Stabelli O, Edgecombe GD, Marchioro T, Longhorn SJ, Telford MJ, Philippe H, Rebecchi L, Peterson KJ, Pisani D (2011) MicroRNAs and phylogenomics resolve the relationships of Tardigrada and suggest that velvet worms are the sister group of Arthropoda. Proc Natl Acad Sci U S A 108:15920–15924PubMedPubMedCentralCrossRefGoogle Scholar
  16. Carmel L, Rogozin IB, Wolf YI, Koonin EV (2007) Evolutionarily conserved genes preferentially accumulate introns. Genome Res 17:1045–1050PubMedPubMedCentralCrossRefGoogle Scholar
  17. Castresana J, Feldmaier-Fuchs G, S-i Y, Satoh N, Pääbo S (1998) The mitochondrial genome of the hemichordate Balanoglossus carnosus and the evolution of deuterostome mitochondria. Genetics 150:1115–1123PubMedPubMedCentralGoogle Scholar
  18. Christodoulou F, Raible F, Tomer R, Simakov O, Trachana K, Klaus S, Snyman H, Hannon GJ, Bork P, Arendt D (2010) Ancient animal microRNAs and the evolution of tissue identity. Nature 463:1084–1088PubMedPubMedCentralCrossRefGoogle Scholar
  19. Churakov G, Grundmann N, Kuritzin A, Brosius J, Makałowski W, Schmitz J (2010) A novel web-based TinT application and the chronology of the Primate Alu retroposon activity. BMC Evol Biol 10:376PubMedPubMedCentralCrossRefGoogle Scholar
  20. Clark AM, Goldstein LD, Tevlin M, Tavare S, Shaham S, Miska EA (2010) The microRNA miR-124 controls gene expression in the sensory nervous system of Caenorhabditis elegans. Nucleic Acids Res 38:3780–3793PubMedPubMedCentralCrossRefGoogle Scholar
  21. Cobb M (2015) Life’s greatest secret: the race to crack the genetic code. Basic Books, LondonGoogle Scholar
  22. Cosner ME, Raubeson LA, Jansen RK (2004) Chloroplast DNA rearrangements in Campanulaceae: phylogenetic utility of highly rearranged genomes. BMC Evol Biol 4:27PubMedPubMedCentralCrossRefGoogle Scholar
  23. Crick FHC (1968) The origin of the genetic code. J Mol Biol 38:367–379PubMedCrossRefGoogle Scholar
  24. Deininger P (2011) Alu elements: know the SINEs. Genome Biol 12:236PubMedPubMedCentralCrossRefGoogle Scholar
  25. Dollo L (1893) Les lois de l’ evolution. Bull Belg Soc Geol, Palaeontol Hydrol 8:164–166Google Scholar
  26. Downie SR, Palmer JD (1992) Use of chloroplast DNA rearrangements in reconstructing plant phylogeny. In: Soltis PS, Soltis DE, Doyle JJ (eds) Molecular systematics of plants. Springer US, Boston, pp 14–35CrossRefGoogle Scholar
  27. Dowton M, Castro LR, Austin AD (2002) Mitochondrial gene rearrangements as phylogenetic characters in the invertebrates: the examination of genome ‘morphology’. Invertebr Syst 16:345–356CrossRefGoogle Scholar
  28. Dutilh BE, Jurgelenaite R, Szklarczyk R, van Hijum SAFT, Harhangi HR, Schmid M, de Wild B, Françoijs KJ, Stunnenberg HG, Strous M, Jetten MSM, Op den Camp HJM, Huynen MA (2011) FACIL: fast and accurate genetic code inference and logo. Bioinformatics 27:1929–1933PubMedPubMedCentralCrossRefGoogle Scholar
  29. Farris JS (1977) Phylogenetic analysis under Dollo’s law. Syst Zool 26:77–88CrossRefGoogle Scholar
  30. Friedrich M, Tautz D (1995) Ribosomal DNA phylogeny of the major extant arthropod classes and the evolution of myriapods. Nature 376:165–167PubMedCrossRefGoogle Scholar
  31. Fu XH, Adamski M, Thompson EM (2008) Altered miRNA repertoire in the simplified chordate, Oikopleura dioica. Mol Biol Evol 25:1067–1080PubMedCrossRefGoogle Scholar
  32. Giordano J, Ge Y, Gelfand Y, Abrusán G, Benson G, Warburton PE (2007) Evolutionary history of mammalian transposons determined by genome-wide defragmentation. PLoS Comput Biol 3:e137PubMedPubMedCentralCrossRefGoogle Scholar
  33. Hall BK (2003) Descent with modification: the unity underlying homology and homoplasy as seen through an analysis of development and evolution. Biol Rev 78:409–433PubMedCrossRefGoogle Scholar
  34. Hallström BM, Janke A (2010) Mammalian evolution may not be strictly bifurcating. Mol Biol Evol 27:2804–2816PubMedPubMedCentralCrossRefGoogle Scholar
  35. Han K-L, Braun EL, Kimball RT, Reddy S, Bowie RCK, Braun MJ, Chojnowski JL, Hackett SJ, Harshman J, Huddleston CJ, Marks BD, Miglia KJ, Moore WS, Sheldon FH, Steadman DW, Witt CC, Yuri T (2011) Are transposable element insertions homoplasy free?: An examination using the Avian tree of life. Syst Biol 60:375–386PubMedCrossRefGoogle Scholar
  36. Hannenhalli S, Pevzner PA (1999) Transforming cabbage into turnip: polynomial algorithm for sorting signed permutations by reversals. J ACM 46:1–27CrossRefGoogle Scholar
  37. Heimberg AM, Cowper-Sallari R, Semon M, Donoghue PCJ, Peterson KJ (2010) microRNAs reveal the interrelationships of hagfish, lampreys, and gnathostomes and the nature of the ancestral vertebrate. Proc Natl Acad Sci U S A 107:19379–19383PubMedPubMedCentralCrossRefGoogle Scholar
  38. Heimberg AM, Sempere LF, Moy VN, Donoghue PCJ, Peterson KJ (2008) MicroRNAs and the advent of vertebrate morphological complexity. Proc Natl Acad Sci U S A 105:2946–2950PubMedPubMedCentralCrossRefGoogle Scholar
  39. Helm C, Bernhart SH, Siederdissen CHZ, Nickel B, Bleidorn C (2012) Deep sequencing of small RNAs confirms an annelid affinity of Myzostomida. Mol Phylogenet Evol 64:198–203PubMedCrossRefGoogle Scholar
  40. Hennig W (1965) Phylogenetic systematics. Annu Rev Entomol 10:97–116CrossRefGoogle Scholar
  41. Hertel J, Lindemeyer M, Missal K, Fried C, Tanzer A, Flamm C, Hofacker IL, Stadler PF, Students Bioinformatics Computer L (2006) The expansion of the metazoan microRNA repertoire. BMC Genomics 7:25PubMedPubMedCentralCrossRefGoogle Scholar
  42. Hilker R, Sickinger C, Pedersen CNS, Stoye J (2012) UniMoG—a unifying framework for genomic distance calculation and sorting based on DCJ. Bioinformatics 28:2509–2511PubMedPubMedCentralCrossRefGoogle Scholar
  43. Hu F, Lin Y, Tang J (2014) MLGO: phylogeny reconstruction and ancestral inference from gene-order data. BMC Bioinformatics 15:354PubMedPubMedCentralCrossRefGoogle Scholar
  44. Huang CRL, Burns KH, Boeke JD (2012) Active transposition in genomes. Annu Rev Genet 46:651–675PubMedPubMedCentralCrossRefGoogle Scholar
  45. Huff JT, Zilberman D, Roy SW (2016) Mechanism for DNA transposons to generate introns on genomic scales. Nature 538:533–536PubMedCrossRefGoogle Scholar
  46. Irimia M, Roy SW (2008) Spliceosomal introns as tools for genomic and evolutionary analysis. Nucleic Acids Res 36:1703–1712PubMedPubMedCentralCrossRefGoogle Scholar
  47. Jeffares DC, Mourier T, Penny D (2006) The biology of intron gain and loss. Trends Genet 22:16–22PubMedCrossRefGoogle Scholar
  48. Jeffroy O, Brinkmann H, Delsuc F, Philippe H (2006) Phylogenomics: the beginning of incongruence? Trends Genet 22:225–231PubMedCrossRefGoogle Scholar
  49. Kaiser VB, van Tuinen M, Ellegren H (2007) Insertion events of CR1 retrotransposable elements elucidate the phylogenetic branching order in Galliform Birds. Mol Biol Evol 24:338–347PubMedCrossRefGoogle Scholar
  50. Kalendar R, Flavell AJ, Ellis THN, Sjakste T, Moisy C, Schulman AH (2011) Analysis of plant diversity with retrotransposon-based molecular markers. Heredity 106:520–530PubMedCrossRefGoogle Scholar
  51. Kazazian HH (2004) Mobile elements: drivers of genome evolution. Science 303:1626–1632PubMedCrossRefGoogle Scholar
  52. Keeling PJ, Doolittle WF (1997) Widespread and ancient distribution of a noncanonical genetic code in diplomonads. Mol Biol Evol 14:895–901PubMedCrossRefGoogle Scholar
  53. Kim VN (2005) MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 6:376–385PubMedCrossRefGoogle Scholar
  54. Kiontke K, Gavin NP, Raynes Y, Roehrig C, Piano F, Fitch DHA (2004) Caenorhabditis phylogeny predicts convergence of hermaphroditism and extensive intron loss. Proc Natl Acad Sci U S A 101:9003–9008PubMedPubMedCentralCrossRefGoogle Scholar
  55. Knight RD, Freeland SJ, Landweber LF (2001) Rewiring the keyboard: evolvability of the genetic code. Nat Rev Genet 2:49–58PubMedCrossRefGoogle Scholar
  56. Kosik KS (2009) OPINION MicroRNAs tell an evo-devo story. Nat Rev Neurosci 10:754–759PubMedCrossRefGoogle Scholar
  57. Kozomara A, Griffiths-Jones S (2011) miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 39:D152–D157PubMedCrossRefGoogle Scholar
  58. Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42:D68–D73PubMedCrossRefGoogle Scholar
  59. Kramerov DA, Vassetzky NS (2005) Short retroposons in Eukaryotic genomes. In: International review of cytology, vol 247. Academic Press, New York, pp 165–221Google Scholar
  60. Krauss V, Thümmler C, Georgi F, Lehmann J, Stadler PF, Eisenhardt C (2008) Near intron positions are reliable phylogenetic markers: an application to holometabolous insects. Mol Biol Evol 25:821–830PubMedCrossRefGoogle Scholar
  61. Kriegs JO, Churakov G, Kiefmann M, Jordan U, Brosius J, Schmitz J (2006) Retroposed elements as archives for the evolutionary history of placental mammals. PLoS Biol 4:e91PubMedPubMedCentralCrossRefGoogle Scholar
  62. Kriegs JO, Matzke A, Churakov G, Kuritzin A, Mayr G, Brosius J, Schmitz J (2007) Waves of genomic hitchhikers shed light on the evolution of gamebirds (Aves: Galliformes). BMC Evol Biol 7:190PubMedPubMedCentralCrossRefGoogle Scholar
  63. Krzywinski J, Besansky NJ (2002) Frequent intron loss in the white gene: a cautionary tale for phylogeneticists. Mol Biol Evol 19:362–366PubMedCrossRefGoogle Scholar
  64. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874PubMedCrossRefGoogle Scholar
  65. Lehmann J, Stadler PF, Krauss V (2013) Near intron pairs and the metazoan tree. Mol Phylogenet Evol 66:811–823PubMedCrossRefGoogle Scholar
  66. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of mammalian microRNA targets. Cell 115:787–798PubMedCrossRefGoogle Scholar
  67. Lin Y, Fei H, Tang J, Moret BME 2012a Maximum likelihood phylogenetic reconstruction from high-resolution whole-genome data and a tree of 68 eukaryotes. In: Proceedings of the 18th pacific symposium on Biocomputing (PSB’13), Singapore, World Scientific, pp 285–296Google Scholar
  68. Lin Y, Rajan V, Moret BME (2012b) TIBA: a tool for phylogeny inference from rearrangement data with bootstrap analysis. Bioinformatics 28:3324–3325PubMedCrossRefGoogle Scholar
  69. Liu N, Okamura K, Tyler DM, Phillips MD, Chung WJ, Lai EC (2008) The evolution and functional diversification of animal microRNA genes. Cell Res 18:985–996PubMedPubMedCentralCrossRefGoogle Scholar
  70. Lyons M, Cardle L, Rostoks N, Waugh R, Flavell AJ (2008) Isolation, analysis and marker utility of novel miniature inverted repeat transposable elements from the barley genome. Mol Gen Genomics 280:275–285CrossRefGoogle Scholar
  71. Malé P-JG, Bardon L, Besnard G, Coissac E, Delsuc F, Engel J, Lhuillier E, Scotti-Saintagne C, Tinaut A, Chave J (2014) Genome skimming by shotgun sequencing helps resolve the phylogeny of a pantropical tree family. Mol Ecol Resour 14:966–975PubMedGoogle Scholar
  72. Malik HS, Eickbush TH (1998) The RTE class of non-LTR retrotransposons is widely distributed in animals and is the origin of many SINEs. Mol Biol Evol 15:1123–1134PubMedCrossRefGoogle Scholar
  73. McClintock B (1950) The origin and behavior of mutable loci in maize. Proc Natl Acad Sci U S A 36:344–355PubMedPubMedCentralCrossRefGoogle Scholar
  74. Moret BME, Lin Y, Tang J (2013) Rearrangements in phylogenetic inference: compare, model, or encode? In: Chauve C, El-Mabrouk N, Tannier E (eds) Models and algorithms for genome evolution. Springer London, London, pp 147–171CrossRefGoogle Scholar
  75. Moret BME, Wyman S, Bader D, Warnow T, Yan M A 2001 new implementation and detailed study of breakpoint analysis. In: Proceedings of the 6th pacific symposim on Biocomputing (PSB’01), Singapore, World Scientific, pp 583–594Google Scholar
  76. Morgan GT (1995) Identification in the human genome of mobile elements spread by DNA-mediated transposition. J Mol Biol 254:1–5PubMedCrossRefGoogle Scholar
  77. Nishihara H, Maruyama S, Okada N (2009) Retroposon analysis and recent geological data suggest near-simultaneous divergence of the three superorders of mammals. Proc Natl Acad Sci U S A 106:5235–5240PubMedPubMedCentralCrossRefGoogle Scholar
  78. Nozawa M, Miura S, Nei M (2010) Origins and evolution of microRNA genes in Drosophila species. Genome Biol Evol 2:180–189PubMedPubMedCentralCrossRefGoogle Scholar
  79. Osawa S, Jukes TH (1989) Codon reassignment (codon capture) in evolution. J Mol Evol 28:271–278PubMedCrossRefGoogle Scholar
  80. Pearson JC, Lemons D, McGinnis W (2005) Modulating Hox gene functions during animal body patterning. Nat Rev Genet 6:893–904PubMedCrossRefGoogle Scholar
  81. Philippe H, Brinkmann H, Copley RR, Moroz LL, Nakano H, Poustka AJ, Wallberg A, Peterson KJ, Telford MJ (2011) Acoelomorph flatworms are deuterostomes related to Xenoturbella. Nature 470:255–258PubMedPubMedCentralCrossRefGoogle Scholar
  82. Ray DA, Xing J, Salem AH, Batzer MA (2006) SINEs of a nearly perfect character. Syst Biol 55:928–935PubMedCrossRefGoogle Scholar
  83. Richter S, Meier R (1994) The development of phylogenetic concepts in Hennig’s early theoretical publications (1947–1966). Syst Biol 43:212–221CrossRefGoogle Scholar
  84. Richter S, Schwarz F, Hering L, Böggemann M, Bleidorn C (2015) The utility of genome skimming for phylogenomic analyses as demonstrated for glycerid relationships (Annelida, Glyceridae). Genome Biol Evol 7:3443–3462PubMedPubMedCentralCrossRefGoogle Scholar
  85. Rogozin IB, Wolf YI, Sorokin AV, Mirkin BG, Koonin EV (2003) Remarkable interkingdom conservation of intron positions and massive, lineage-specific intron loss and gain in eukaryotic evolution. Curr Biol 13:1512–1517PubMedCrossRefGoogle Scholar
  86. Rokas A, Holland PWH (2000) Rare genomic changes as a tool for phylogenetics. Trends Ecol Evol 15:454–459PubMedCrossRefGoogle Scholar
  87. Rota-Stabelli OR-SO, Campbell L, Brinkmann H, Edgecombe GD, Longhorn SJ, Peterson KJ, Pisani D, Philippe H, Telford MJ (2011) A congruent solution to arthropod phylogeny: phylogenomics, microRNAs and morphology support monophyletic Mandibulata. Proc R Soc Lond B Biol Sci 278:298–306CrossRefGoogle Scholar
  88. Roy SW (2016) How common is parallel intron gain? Rapid evolution versus independent creation in recently created introns in daphnia. Mol Biol Evol 33:1902–1906PubMedCrossRefGoogle Scholar
  89. Roy SW, Gilbert W (2005a) Rates of intron loss and gain: implications for early eukaryotic evolution. Proc Natl Acad Sci U S A 102:5773–5778PubMedPubMedCentralCrossRefGoogle Scholar
  90. Roy SW, Gilbert W (2005b) Resolution of a deep animal divergence by the pattern of intron conservation. Proc Natl Acad Sci U S A 102:4403–4408PubMedPubMedCentralCrossRefGoogle Scholar
  91. Sankoff D, Leduc G, Antoine N, Paquin B, Lang BF, Cedergren R (1992) Gene order comparisons for phylogenetic inference: evolution of the mitochondrial genome. Proc Natl Acad Sci U S A 89:6575–6579PubMedPubMedCentralCrossRefGoogle Scholar
  92. Schultz DW, Yarus M (1994) Transfer RNA mutation and the malleability of the genetic code. J Mol Biol 235:1377–1380PubMedCrossRefGoogle Scholar
  93. Sempere LF, Cole CN, McPeek MA, Peterson KJ (2006) The phylogenetic distribution of metazoan microRNAs: Insights into evolutionary complexity and constraint. J Exp Zool Part B 306B:575–588CrossRefGoogle Scholar
  94. Sengupta S, Yang X, Higgs PG (2007) The mechanisms of codon reassignments in mitochondrial genetic codes. J Mol Evol 64:662–688PubMedPubMedCentralCrossRefGoogle Scholar
  95. Shabalina SA, Koonin EV (2008) Origins and evolution of eukaryotic RNA interference. Trends Ecol Evol 23:578–587PubMedPubMedCentralCrossRefGoogle Scholar
  96. Shao R, Barker SC (2003) The highly rearranged mitochondrial genome of the plague thrips, Thrips imaginis (Insecta: Thysanoptera): convergence of two novel gene boundaries and an extraordinary arrangement of rRNA Genes. Mol Biol Evol 20:362–370PubMedCrossRefGoogle Scholar
  97. Shedlock AM, Okada N (2000) SINE insertions: powerful tools for molecular systematics. BioEssays 22:148–160PubMedCrossRefGoogle Scholar
  98. Shimamura M, Yasue H, Ohshima K, Abe H, Kato H, Kishiro T, Goto M, Munechika I, Okada N (1997) Molecular evidence from retroposons that whales form a clade within even-toed ungulates. Nature 388:666–670PubMedCrossRefGoogle Scholar
  99. Skalsky RL, Cullen BR (2010) Viruses, microRNAs, and host interactions. Annu Rev Microbiol 64:123–141PubMedPubMedCentralCrossRefGoogle Scholar
  100. Sperling EA, Pisani D, Peterson KJ (2011) Molecular paleobiological insights into the origin of the Brachiopoda. Evol Dev 13:290–303PubMedCrossRefGoogle Scholar
  101. Sperling EA, Vinther J, Moy VN, Wheeler BM, Semon M, Briggs DEG, Peterson KJ (2009) MicroRNAs resolve an apparent conflict between annelid systematics and their fossil record. Proc R Soc Lond B Biol Sci 276:4315–4322CrossRefGoogle Scholar
  102. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313PubMedPubMedCentralCrossRefGoogle Scholar
  103. Sturtevant AH, Dobzhansky T (1936) Inversions in the third chromosome of wild races of Drosophila pseudoobscura, and their use in the study of the history of the species. Proc Natl Acad Sci U S A 22:448–450PubMedPubMedCentralCrossRefGoogle Scholar
  104. Suh A, Paus M, Kiefmann M, Churakov G, Franke FA, Brosius J, Kriegs JO, Schmitz J (2011) Mesozoic retroposons reveal parrots as the closest living relatives of passerine birds. Nat Commun 2:443PubMedPubMedCentralCrossRefGoogle Scholar
  105. Suh A, Smeds L, Ellegren H (2015) The dynamics of incomplete lineage sorting across the ancient adaptive radiation of neoavian birds. PLoS Biol 13:e1002224PubMedPubMedCentralCrossRefGoogle Scholar
  106. Sverdlov AV, Rogozin IB, Babenko VN, Koonin EV (2005) Conservation versus parallel gains in intron evolution. Nucleic Acids Res 33:1741–1748PubMedPubMedCentralCrossRefGoogle Scholar
  107. Takahashi K, Terai Y, Nishida M, Okada N (2001) Phylogenetic relationships and ancient incomplete lineage sorting among cichlid fishes in Lake Tanganyika as revealed by analysis of the insertion of retroposons. Mol Biol Evol 18:2057–2066PubMedCrossRefGoogle Scholar
  108. Tanzer A, Amemiya CT, Kim CB, Stadler PF (2005) Evolution of microRNAs located within Hox gene clusters. J Exp Zool Part B 304B:75–85CrossRefGoogle Scholar
  109. Tarailo-Graovac M, Chen N (2009) Using repeatMasker to identify repetitive elements in genomic sequences. Current Protocols in Bioinformatics Chapter 4, Unit 4, p 108Google Scholar
  110. Tarver JE, Sperling EA, Nailor A, Heimberg AM, Robinson JM, King BL, Pisani D, Donoghue PCJ, Peterson KJ (2013) miRNAs: Small genes with big potential in metazoan phylogenetics. Mol Biol Evol 30:2369–2382PubMedCrossRefGoogle Scholar
  111. Telford MJ, Herniou EA, Russell RB, Littlewood DTJ (2000) Changes in mitochondrial genetic codes as phylogenetic characters: two examples from the flatworms. Proc Natl Acad Sci U S A 97:11359–11364PubMedPubMedCentralCrossRefGoogle Scholar
  112. Thomson RC, Plachetzki DC, Mahler DL, Moore BR (2014) A critical appraisal of the use of microRNA data in phylogenetics. Proc Natl Acad Sci U S A 111:E3659–E3668PubMedPubMedCentralCrossRefGoogle Scholar
  113. Venkatesh B, Ning Y, Brenner S (1999) Late changes in spliceosomal introns define clades in vertebrate evolution. Proc Natl Acad Sci U S A 96:10267–10271PubMedPubMedCentralCrossRefGoogle Scholar
  114. Waddell PJ, Kishino H, Ota R (2001) A phylogenetic foundation for comparative mammalian genomics. Genome Inform 12:141–154PubMedGoogle Scholar
  115. Wessler SR, Bureau TE, White SE (1995) LTR-retrotransposons and MITEs: important players in the evolution of plant genomes. Curr Opin Genet Dev 5:814–821PubMedCrossRefGoogle Scholar
  116. Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973–982PubMedCrossRefGoogle Scholar
  117. Yaakov B, Ceylan E, Domb K, Kashkush K (2012) Marker utility of miniature inverted-repeat transposable elements for wheat biodiversity and evolution. Theor Appl Genet 124:1365–1373PubMedCrossRefGoogle Scholar
  118. Yancopoulos S, Attie O, Friedberg R (2005) Efficient sorting of genomic permutations by translocation, inversion and block interchange. Bioinformatics 21:3340–3346PubMedCrossRefGoogle Scholar
  119. Zheng J, Rogozin IB, Koonin EV, Przytycka TM (2007) Support for the Coelomata Clade of Animals from a Rigorous Analysis of the Pattern of Intron Conservation. Mol Biol Evol 24:2583–2592PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Christoph Bleidorn
    • 1
  1. 1.Museo Nacional de Ciencias NaturalesSpanish National Research Council (CSIC)MadridSpain

Personalised recommendations