Using Interaction Data for Continuous Creation of Trace Links Between Source Code and Requirements in Issue Tracking Systems

  • Paul HübnerEmail author
  • Barbara Paech
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10153)


Context and Motivation: Information retrieval (IR) trace link creation approaches have insufficient precision and do not perform well on unstructured data which is typical in issue tracker systems (ITS). Question/problem: We are interested in understanding how interaction tracking on artifacts can help to improve precision and recall of trace links between requirements specified unstructured in an ITS and source code. Principal ideas/results: We performed a study with open source project data in which artifact interactions while working on requirements specified in an ITS have been recorded. Contribution: The results of our study show that precision of interaction-based links is 100% and recall is 93% for the first and 80% for the second evaluated data set relative to IR-created links. Along with the study we developed an approach based on standard tools to automatically create trace links using interactions which also takes into account source code structure. The approach and the study show that trace links creation in practice can be supported with little extra effort for the developers.


Traceability Continuous Interaction Requirement Source code 



We thank the open source community for providing the data for our research.


  1. 1.
    Ali, N., Gueheneuc, Y.G., Antoniol, G.: Requirements traceability for object oriented systems by partitioning source code. In: Conference on Reverse Engineering, pp. 45–54. IEEE, October 2011Google Scholar
  2. 2.
    Ali, N., Gueheneuc, Y.G., Antoniol, G.: Trustrace: mining software repositories to improve the accuracy of requirement traceability links. IEEE TSE 39(5), 725–741 (2013)Google Scholar
  3. 3.
    Asuncion, H.U., Taylor, R.N.: Automated techniques for capturing custom traceability links across heterogeneous artifacts. In: Cleland-Huang, J., Gotel, O., Zisman, A. (eds.) Software and Systems Traceability, pp. 129–146. Springer, London (2012)CrossRefGoogle Scholar
  4. 4.
    Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval, 2nd edn. Pearson, Addison-Wesley, Harlow, Munich (2011)Google Scholar
  5. 5.
    Borg, M., Runeson, P., Ardö, A.: Recovering from a decade: a systematic mapping of information retrieval approaches to software traceability. Empir. Softw. Eng. 19(6), 1–52 (2013)Google Scholar
  6. 6.
    Briand, L., Falessi, D., Nejati, S., Sabetzadeh, M., Yue, T.: Traceability and SysML design slices to support safety inspections. ACM ToSEM 23(1), 1–43 (2014)CrossRefGoogle Scholar
  7. 7.
    Cleland-Huang, J., Berenbach, B., Clark, S., Settimi, R., Romanova, E.: Best practices for automated traceability. Computer 40(6), 27–35 (2007)CrossRefGoogle Scholar
  8. 8.
    De Lucia, A., Fasano, F., Oliveto, R., Tortora, G.: Enhancing an artefact management system with traceability recovery features. In: ICSM, pp. 306–315. IEEE (2004)Google Scholar
  9. 9.
    De Lucia, A., Di Penta, M., Oliveto, R.: Improving source code lexicon via traceability and information retrieval. IEEE TSE 37(2), 205–227 (2011)Google Scholar
  10. 10.
    De Lucia, A., Fasano, F., Oliveto, R., Tortora, G.: Recovering traceability links in software artifact management systems using information retrieval methods. ACM ToSEM 16(4), 1–50 (2007)CrossRefGoogle Scholar
  11. 11.
    Delater, A., Paech, B.: Tracing requirements and source code during software development: an empirical study. In: International Symposium on Empirical Software Engineering and Measurement, pp. 25–34. IEEE/ACM, Baltimore, October 2013Google Scholar
  12. 12.
    Falessi, D., Di Penta, M., Canfora, G., Cantone, G.: Estimating the number of remaining links in traceability recovery. Empir. Softw. Eng. (2016)Google Scholar
  13. 13.
    Fricke, M.: Measuring recall. J. Inf. Sci. 24(6), 409–417 (1998)CrossRefGoogle Scholar
  14. 14.
    Gotel, O., Cleland-Huang, J., Hayes, J.H., Zisman, A., Egyed, A., Grunbacher, P., Antoniol, G.: The quest for ubiquity: a roadmap for software and systems traceability research. In: RE, pp. 71–80. IEEE, September 2012Google Scholar
  15. 15.
    Hayes, J., Dekhtyar, A., Sundaram, S.: Advancing candidate link generation for requirements tracing: the study of methods. IEEE TSE 32(1), 4–19 (2006)Google Scholar
  16. 16.
    Hübner, P.: Quality improvements for trace links between source code and requirements. In: Joint Proceedings of REFSQ Workshops, Doctoral Symposium, Research Method Track, and Poster Track. CEUR-WS, Gothenburg, Sweden (2016)Google Scholar
  17. 17.
    Kersten, M., Murphy, G.C.: Using task context to improve programmer productivity. In: Proceedings of the 14th ACM SIGSOFT International Symposium on Foundations of Software Engineering - SIGSOFT 2006/FSE 2014, pp. 1–11. ACM, New York, November 2006Google Scholar
  18. 18.
    Konopka, M., Navrat, P.: Untangling development tasks with software developer’s activity. In: International Workshop on Context for Software Development, pp. 13–14. IEEE/ACM, May 2015Google Scholar
  19. 19.
    Konopka, M., Navrat, P., Bielikova, M.: Poster: discovering code dependencies by harnessing developer’s activity. In: ICSE, pp. 801–802. IEEE/ACM, May 2015Google Scholar
  20. 20.
    Kumar, B., Prakash, J.: Precision and relative recall of search engines: a comparative study of Google and Yahoo. Singap. J. Libr. Inf. Manag. 38(1), 124–137 (2009)Google Scholar
  21. 21.
    Maalej, W., Ellmann, M.: On the similarity of task contexts. In: International Workshop on Context for Software Development, pp. 8–12. IEEE/ACM, May 2015Google Scholar
  22. 22.
    Maalej, W., Kurtanovic, Z., Felfernig, A.: What stakeholders need to know about requirements. In: EmpiRE, pp. 64–71. IEEE, August 2014Google Scholar
  23. 23.
    Mäder, P., Egyed, A.: Do developers benefit from requirements traceability when evolving and maintaining a software system? Empir. Softw. Eng. 20(2), 413–441 (2015)CrossRefGoogle Scholar
  24. 24.
    Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval, 1st edn. Cambridge University Press, Cambridge (2008)CrossRefzbMATHGoogle Scholar
  25. 25.
    McMillan, C., Poshyvanyk, D., Revelle, M.: Combining textual and structural analysis of software artifacts for traceability link recovery. In: ICSE Workshop on Traceability in Emerging Forms of SE, pp. 41–48. IEEE, May 2009Google Scholar
  26. 26.
    Merten, T., Falisy, M., Hübner, P., Quirchmayr, T., Bürsner, S., Paech, B.: Software feature request detection in issue tracking systems. In: RE, IEEE, September 2016Google Scholar
  27. 27.
    Merten, T., Krämer, D., Mager, B., Schell, P., Bürsner, S., Paech, B.: Do information retrieval algorithms for automated traceability perform effectively on issue tracking system data? In: Daneva, M., Pastor, O. (eds.) REFSQ 2016. LNCS, vol. 9619, pp. 45–62. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-30282-9_4 Google Scholar
  28. 28.
    Murphy, G., Kersten, M., Findlater, L.: How are Java software developers using the elipse IDE? IEEE Softw. 23(4), 76–83 (2006)CrossRefGoogle Scholar
  29. 29.
    Niu, N., Mahmoud, A.: Enhancing candidate link generation for requirements tracing: the cluster hypothesis revisited. In: RE, pp. 81–90. IEEE, September 2012Google Scholar
  30. 30.
    Omoronyia, I., Sindre, G., Roper, M., Ferguson, J., Wood, M.: Use case to source code traceability: the developer navigation view point. In: RE, pp. 237–242. IEEE, Los Alamitos, August 2009Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute for Computer ScienceHeidelberg UniversityHeidelbergGermany

Personalised recommendations