Advertisement

An Accuracy Estimation for a Non Integer Order, Discrete, State Space Model of Heat Transfer Process

  • Krzysztof OprzedkiewiczEmail author
  • Wojciech Mitkowski
  • Edyta Gawin
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 550)

Abstract

In the paper an accuracy analysis for non integer order, discrete, state space model of heat transfer process in one dimensional plant is presented. The proposed model is a discrete version of time - continuous, non integer order, state space model proposed previously by Authors. The discretization of integro/differential operator was done with the use of backward difference method. The accuracy and convergence of the discussed model was considered as a function of model order and memory length necessary to proper estimation of non integer order operator. Tests were done with the use of PLC and SCADA based experimental system. Results of experiments show that the proposed, discrete model assures the good performance in the sense of MSE cost function, but its size is relatively high.

Keywords

Non integer order systems Discrete time systems Heat transfer process PSE approximation 

Notes

Acknowledgments

The paper was sponsored by AGH University grant no 11.11.120.817.

References

  1. 1.
    Al Aloui, M.A.: Dicretization methods of fractional parallel PID controllers. In: Proceedings of 6th IEEE International Conference on Electronics, Circuits and Systems, ICECS 2009, pp. 327–330 (2009)Google Scholar
  2. 2.
    Berger, H.: Automating with STEP 7 in STL and SCL: SIMATIC S7–300/400 Programmable Controllers. SIEMENS (2012)Google Scholar
  3. 3.
    Berger, H.: (2013) Automating with SIMATIC: Controllers. Software, Programming, Data. SIEMENS (2013)Google Scholar
  4. 4.
    Caponetto R., Dongola G., Fortuna l., Petras I.: Fractional Order Systems. In: Modeling and Control Applications, World Scientific Series on Nonlinear Science, Series A, vol. 72. World Scientific Publishing (2010)Google Scholar
  5. 5.
    Chen, Y.Q., Moore, K.L.: Discretization schemes for fractional-order differentiators and integrators. IEEE Trans. Circ. Syst.- I: Fundam. Theo. Appl. 49(3), 363–367 (2002)Google Scholar
  6. 6.
    Das, S.: Functional fractional calculus for system identification and controls (2008)Google Scholar
  7. 7.
    Das, S., Pan, I.: Intelligent Fractional Order Systems and Control. An Introduction. SCI, vol. 438. Springer, Heidelberg (2013)zbMATHGoogle Scholar
  8. 8.
    Douambi, A., Charef, A., Besancon, A.: Optimal approximation, simulation and analog realization of the fundamental fractional order transfer function. Int. J. Appl. Math. Comp. Sci. 17(4), 455–462 (2007)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Dzieliński, A., Sierociuk, D., Sarwas, G.: Some applications of fractional order calculus. Bull. Pol. Acad. Sci. Tech. Sci. 58(4), 583–592 (2010)zbMATHGoogle Scholar
  10. 10.
    Frey, G., Litz, L.: Formal methods in PLC programming. In: Proceedings of the IEEE Conference on Systems Man and Cybrenetics, SMC 2000, Nashville, 8–11 October 2000, pp. 2431–2436 (2000)Google Scholar
  11. 11.
    Isermann, R., Muenchhof, M.: Identification of Dynamic Systems. An Introduction with Applications. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    John, K.H., Tiegelkamp, M.: IEC 61131–3: Programming Industrial Automation Systems. Concepts and Programming Languages, Requirements for Programming Systems, Decision Making Aids. Springer, Heidelberg (2010)Google Scholar
  13. 13.
    Kaczorek, T.: Selected Problems in Fractional Systems Theory. LNCIS, vol. 411. Springer, Heidelberg (2011)CrossRefzbMATHGoogle Scholar
  14. 14.
    Kaczorek, T., Rogowski K.: Fractional Linear Systems and Electrical Circuits. Bialystok University of Technology, Bialystok (2014)Google Scholar
  15. 15.
    Lewis, R.W.: Programming industrial control systems using IEC 1131–3 IEE 1998 (1998)Google Scholar
  16. 16.
    Luo, Y., Chen, Y.Q., Wang, C.Y., Pi, Y.G.: Tuning fractional order proportional integral controllers for fractional order systems. J. Process Control 20(2010), 823–831 (2010)CrossRefGoogle Scholar
  17. 17.
    Mitkowski W., Oprzedkiewicz K.: Optimal sample time estimation for the finite-dimensional discrete dynamic compensator implemented at the “soft PLC” platform. In: 23rd IFIP TC 7 Conference on System Modelling and Optimization, Cracow, Poland, July 23–27 (2007). Book of abstracts Korytowski, A., Mitkowski, W., Szymkat, M. (eds.): AGH University of Science and Technology. Faculty of Electrical Engineering, Automatics, Computer Science and Electronics, Krakow, pp. 77–78 (2007). ISBN 978-83-88309-0Google Scholar
  18. 18.
    Mitkowski, W., Oprzedkiewicz, K.: Fractional-order \(P2D^\beta \) controller for uncertain parameter DC motor. In: Mitkowski, W., Kacprzyk, J., Baranowski, J.(eds.) Advances in the Theory and Applications of Non-integer Order Systems. LNEE, vol. 257, pp. 249–259. Springer, Heidelberg (2013).  10.1007/978-3-319-00933-9_23
  19. 19.
    Mozyrska, D., Pawluszewicz, E.: Fractional discrete-time linear control systems with initialisation. Int. J. Control 2011, 1–7 (2011)zbMATHGoogle Scholar
  20. 20.
    Oprzedkiewicz, K., Chochol, M., Bauer, W., Meresinski, T.: Modeling of elementary fractional order plants at PLC SIEMENS platform. In: Latawiec, K.J., Łukaniszyn, M., Stanisławski, R. (eds.) Advances in Modelling and Control of Non-integer-Order Systems. LNEE, vol. 320, pp. 265–273. Springer, Cham (2015). doi: 10.1007/978-3-319-09900-2_25 Google Scholar
  21. 21.
    Oprzedkiewicz, K., Mitkowski, W., Gawin, E.: Application of fractional order transfer functions to modeling of high - order systems. In: MMAR 2015: 20th International Conference on Methods and Models in Automation and Robotics, 24–27, Mędzyzdroje, Poland: Program, Abstracts, Proceedings (CD), Szczecin: ZAPOL Sobczyk Sp. j. (2015)+ CD. 978–1, ISBN: 978-1-4799-8701-6-4799-8700-9, ISBN: 978-83-7518-756-4, S. 127. Full text CD, pp. 1169-1174, August 2015Google Scholar
  22. 22.
    Oprzędkiewicz, K., Mitkowski, W., Gawin, E.: An estimation of accuracy of oustaloup approximation. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds.) Challenges in Automation, Robotics and Measurement Techniques. AISC, vol. 440, pp. 299–307. Springer, Cham (2016). doi: 10.1007/978-3-319-29357-8_27 CrossRefGoogle Scholar
  23. 23.
    Oprzedkiewicz, K., Mitkowski, W., Gawin, E.: Parameter identification for non integer order, state space models of heat plant. In: MMAR 2016: 21th International Conference on Methods and Models in Automation and Robotics, 29 August, 2016, Międzyzdroje, Poland, pp. 184–188, September 2016, ISBN: 978-1-5090-1866-6, ISBN: 978-83-7518-791-5Google Scholar
  24. 24.
    Oprzedkiewicz K., Gawin E.: Non integer order, state space model for one dimensional heat transfer process. Arch. Control Sci., 26(2), 261–275 (2016). ISSN 1230–2384, https://www-1degruyter-1com-1atoz.wbg2.bg.agh.edu.pl/downloadpdf/j/acsc.2016.26.issue-2/acsc-2016-0015/acsc-2016-0015.xml
  25. 25.
    Ostalczyk, P.: Equivalent descriptions of a discrete-time fractional-order linear system and its stability domains. Int. J. Appl. Math. Comput. Sci. 22(3), 533–538 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Ostalczyk, P.: Discrete Fractional Calculus. Applications in control and image processing. Series in Computer Vision, vol. 4. World Scientific Publishing (2016)Google Scholar
  27. 27.
    Padula, F., Visioli, A.: Tuning rules for optimal PID and fractional-order PID controllers. J. Process Control 21, 69–81 (2011)CrossRefzbMATHGoogle Scholar
  28. 28.
    Petras, I.: Fractional order feedback control of a DC motor. J. Electr. Eng. 60(3), 117–128 (2009)Google Scholar
  29. 29.
    Petras, I.: Realization of fractional order controller based on PLC and its utilization to temperature control, Transfer inovácií 14/2009 (2009)Google Scholar
  30. 30.
    Petras, I.: Tuning and implementation methods for fractional-order controllers. Frac. Calc. Appl. Anal. 15(2), 2012 (2012)MathSciNetzbMATHGoogle Scholar
  31. 31.
  32. 32.
  33. 33.
    Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)zbMATHGoogle Scholar
  34. 34.
    Sierociuk, D., Macias, M.: New recursive approximation of fractional order derivative and its application to control. In: Proceedings of 17th International Carpathian Control Conference (ICCC), pp. 673–678 (2016)Google Scholar
  35. 35.
    Stanislawski, R., Latawiec, K.J., Lukaniszyn, M.: A comparative analysis of laguerre-based approximators to the grünwald-Letnikov fractional-order difference. Mathematical Problems in Engineering, vol. 2015, Article ID 512104, 10 p. (2015). http://dx.doi.org/10.1155/2015/512104
  36. 36.
    Valerio, D., da Costa, J.S.: Tuning of fractional PID controllers with Ziegler-Nichols-type rules. Sig. Process. 86(2006), 2771–2784 (2006)CrossRefzbMATHGoogle Scholar
  37. 37.
    Vinagre, B.M., Podlubny, I., Hernandez, A., Feliu, V.: Some approximations of fractional order operators used in control theory and applications. Fractional Calc. Appl. Anal. 3(3), 231–248 (2000)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Vinagre, B.M., Chen, Y.Q., Petras, I.: Two direct Tustin discretization methods for fractional-order differentiator/integrator. J. Franklin Inst. 340, 349–362 (2003)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Krzysztof Oprzedkiewicz
    • 1
    Email author
  • Wojciech Mitkowski
    • 1
  • Edyta Gawin
    • 2
  1. 1.AGH UniversityKrakowPoland
  2. 2.State Higher Vocational School in TarnowTarnowPoland

Personalised recommendations