Active LR Integrator Circuit for Drift-Free Fluxmeter

  • Piotr GazdaEmail author
  • Michał Nowicki
  • Maciej Kachniarz
  • Maciej Szudarek
  • Roman Szewczyk
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 550)


The following paper presents the idea of the active integrator circuit based on inductive and resistance components. Such design allows to eliminate the time drift of the circuit, which is undesired phenomenon resulting from capacitive components utilized in classic constructions. This type of integrator circuit can be used to develop the drift-free fluxmeter for investigation of ferromagnetic hysteresis phenomenon in soft magnetic materials. The paper presents concept of the integrator circuit. The SPICE simulations was performed to validate the presented idea. Finally the developed solution was tested and obtained results confirm the correctness of the integrator circuits operation.


LR integrator circuit Magnetic measurements Drift-free fluxmeter 



This work was partially supported by the statutory founds of Institute of Metrology and Biomedical Engineering, Warsaw University of Technology (Poland).


  1. 1.
    Batrakov, A., Sazansky, V., Shichkov, D., Vagin, P.: Hardware and software for magnetic measurements with movable coils. In: Proceedings of RuPAC 2006, Novosibirsk, Russia (2006)Google Scholar
  2. 2.
    Gavin, H.P., Morales, R., Relly, K.: Drift-free integrators. Rev. Sci. Instrum. 69, 2171 (1998). doi: 10.1063/1.1148918 CrossRefGoogle Scholar
  3. 3.
    Ga, E.M., et al.: Drift self-compensating type flux-meter for automatic magnetic flux measurement. J. Magn. 8(4), 160–163 (2003)CrossRefGoogle Scholar
  4. 4.
    Chadbourne, T.G.: Integrating fluxmeter with input current compensation to cancel drift. U.S. Patent No. 3,978,399, 31 August 1976Google Scholar
  5. 5.
    Salach, J., Szewczyk, R., Nowicki, M., Korobiichuk, I.: Metallic glass core utilization as the magnetoelastic torque sensor. East. Eur. J. Enterp. Technol. 5(5), 4–7 (2015). doi: 10.15587/1729-4061.2015.50153 Google Scholar
  6. 6.
    Salach, J., Jackiewicz, D., Bieńkowski, A., Szewczyk, R., Gruszecka, M.: Amorphous soft magnetic Fe80B11Si9 alloy in tensile stress sensors application. Acta Phys. Pol. A 126(1), 102–103 (2014)CrossRefGoogle Scholar
  7. 7.
    Bieńkowski, A., Szewczyk, R., Kulik, T., Ferenc, J., Salach, J.: Magnetoelastic properties of HITPERM-type Fe41,5Co41,5Cu1Nb3B13 nanocrystalline alloy. J. Magn. Magn. Mater. 304(2), 624–626 (2006)CrossRefGoogle Scholar
  8. 8.
    Jackiewicz, D., Salach, J., Szewczyk, R., Bieńkowski, A.: Application of extended jiles-atherton model for modelling the influence of stresses on magnetic characteristics of the construction steel. Acta Phys. Pol. A 126(1), 392–393 (2014)CrossRefGoogle Scholar
  9. 9.
    Kachniarz, M., Salach, J., Bienkowski, A., Szewczyk, R., Korobiichuk, I.: Investigation of temperature effect on magnetic characteristics of manganese-zinc ferrites. East. Eur. J. Enterp. Technol. 6(5), 17–21 (2015). doi: 10.15587/1729-4061.2015.55410 Google Scholar
  10. 10.
    Urbański, M., Charubin, T., Rozum, P., Nowicki, M., Szewczyk, R.: Automated system for testing ferromagnetic materials. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds.) Challenges in Automation, Robotics and Measurement Techniques. Advances in Intelligent Systems and Computing, vol. 440, pp. 817–825. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-29357-8_72

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Piotr Gazda
    • 1
    Email author
  • Michał Nowicki
    • 1
  • Maciej Kachniarz
    • 2
  • Maciej Szudarek
    • 1
  • Roman Szewczyk
    • 1
  1. 1.Institute of Metrology and Biomedical EngineeringWarsaw University of TechnologyWarsawPoland
  2. 2.Industrial Research Institute for Automation and MeasurementsWarsawPoland

Personalised recommendations