Advertisement

Applying Parametric Model-Checking Techniques for Reusing Real-Time Critical Systems

  • Baptiste ParquierEmail author
  • Laurent Rioux
  • Rafik Henia
  • Romain Soulat
  • Olivier H. Roux
  • Didier Lime
  • Étienne André
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 694)

Abstract

Due to the increase of complexity in real-time safety-critical systems, verification and validation costs have significantly increased. A straightforward way to reduce costs is to reuse existing systems, adapting them to new requirements, so as to avoid new costly developments. Our aim is to verify during the development strategy definition phase whether the existing products can be reused and adapted for a new customer, by identifying key parameters to be tuned in order to reuse existing products. Performing efficient verification is therefore crucial.

In this paper, we focus on the performance requirement aspects. Nowadays, model-checking techniques have improved significantly to verify the performances of real-time systems. However, model-checking cannot address real-time systems where some timing constants are unknown or uncertain. Parametric model-checking leverage this shortcoming by identifying parameter ranges for which the system is correct. We report here on an experiment of the evaluation of the use of these formal techniques applied to automatize the synthesis of good parameter ranges for system reuse in the setting of the environment requirements for an aerial video tracking system.

Keywords

Real-time systems Safety-critical systems Formal methods Parametric verification Performance verification Case study Avionics 

Notes

Acknowledgment

The authors would like to thank Violette Lecointre for her participation at modeling the case-study with Roméo.

References

  1. 1.
    Aceto, L., Bouyer, P., Burgueño, A., Larsen, K.G.: The power of reachability testing for timed automata. In: Arvind, V., Ramanujam, S. (eds.) FSTTCS 1998. LNCS, vol. 1530, pp. 245–256. Springer, Heidelberg (1998). doi: 10.1007/978-3-540-49382-2_22 CrossRefGoogle Scholar
  2. 2.
    Aceto, L., Burgueño, A., Larsen, K.G.: Model checking via reachability testing for timed automata. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 263–280. Springer, Heidelberg (1998). doi: 10.1007/BFb0054177 CrossRefGoogle Scholar
  3. 3.
    Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In: STOC, pp. 592–601. ACM (1993)Google Scholar
  4. 4.
    André, É.: Observer patterns for real-time systems. In: ICECCS, pp. 125–134. IEEE Computer Society (2013)Google Scholar
  5. 5.
    André, É.: What’s decidable about parametric timed automata? In: Artho, C., Ölveczky, P.C. (eds.) FTSCS 2015. CCIS, vol. 596, pp. 52–68. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-29510-7_3 CrossRefGoogle Scholar
  6. 6.
    André, É., Chatain, T., Encrenaz, E., Fribourg, L.: An inverse method for parametric timed automata. Int. J. Found. Comput. Sci. 20(5), 819–836 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    André, É., Fribourg, L., Kühne, U., Soulat, R.: IMITATOR 2.5: a tool for analyzing robustness in scheduling problems. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 33–36. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-32759-9_6 CrossRefGoogle Scholar
  8. 8.
    André, É., Lime, D., Roux, O.H.: Integer-complete synthesis for bounded parametric timed automata. In: Bojańczyk, M., Lasota, S., Potapov, I. (eds.) RP 2015. LNCS, vol. 9328, pp. 7–19. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-24537-9_2 CrossRefGoogle Scholar
  9. 9.
    Bagnara, R., Hill, P.M., Zaffanella, E.: The Parma Polyhedra Library: toward a complete set of numerical abstractions for the analysis and verification of hardware and software systems. Sci. Comput. Program. 72(1–2), 3–21 (2008)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Bini, E.: The design domain of real-time systems. PhD thesis, Scuola Superiore Sant’Anna (2004)Google Scholar
  11. 11.
    Boucheneb, H., Gardey, G., Roux, O.H.: TCTL model checking of time Petri nets. J. Logic Comput. 19(6), 1509–1540 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Doyen, L.: Robust parametric reachability for timed automata. Inf. Process. Lett. 102(5), 208–213 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    González Harbour, M., Gutiérrez García, J.J., Palencia Gutiérrez, J.C., Drake Moyano, J.M.: MAST: modeling and analysis suite for real time applications. In: ECRTS, pp. 125–134. IEEE Computer Society (2001)Google Scholar
  14. 14.
    Henia, R., Hamann, A., Jersak, M., Racu, R., Richter, K., Ernst, R.: System level performance analysis - the SymTA/S approach. IEE Proc. Comput. Digital Tech. 152(2), 148–166 (2005)CrossRefGoogle Scholar
  15. 15.
    Jovanović, A., Lime, D., Roux, O.H.: Integer parameter synthesis for real-time systems. IEEE Trans. Softw. Eng. 41(5), 445–461 (2015)CrossRefGoogle Scholar
  16. 16.
    Le, T.T.H., Palopoli, L., Passerone, R., Ramadian, Y.: Timed-automata based schedulability analysis for distributed firm real-time systems: a case study. Int. J. Softw. Tools Technol. Transf. 15(3), 211–228 (2013)CrossRefGoogle Scholar
  17. 17.
    Lime, D., Roux, O.H., Seidner, C., Traonouez, L.-M.: Romeo: a parametric model-checker for petri nets with stopwatches. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 54–57. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-00768-2_6 CrossRefGoogle Scholar
  18. 18.
    Miller, J.S.: Decidability and complexity results for timed automata and semi-linear hybrid automata. In: Lynch, N., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 296–310. Springer, Heidelberg (2000). doi: 10.1007/3-540-46430-1_26 CrossRefGoogle Scholar
  19. 19.
    Palencia Gutiérrez, J.C., González Harbour, M.: Schedulability analysis for tasks with static and dynamic offsets. In: IEEE Real-Time Systems Symposium, pp. 26–37. IEEE Computer Society (1998)Google Scholar
  20. 20.
    Richter, K., Ernst, R.: Event model interfaces for heterogeneous system analysis. In: DATE, pp. 506–513. IEEE Computer Society (2002)Google Scholar
  21. 21.
    Sun, Y., Soulat, R., Lipari, G., André, É., Fribourg, L.: Parametric schedulability analysis of fixed priority real-time distributed systems. In: Artho, C., Ölveczky, P.C. (eds.) FTSCS 2013. CCIS, vol. 419, pp. 212–228. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-05416-2_14 CrossRefGoogle Scholar
  22. 22.
    Traonouez, L.-M., Lime, D., Roux, O.H.: Parametric model-checking of stopwatch Petri nets. J. Univ. Comput. Sci. 15(17), 3273–3304 (2009)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Wandeler, E., Thiele, L., Verhoef, M., Lieverse, P.: System architecture evaluation using modular performance analysis: a case study. Int. J. Softw. Tools Technol. Transf. 8(6), 649–667 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Baptiste Parquier
    • 1
    • 2
    Email author
  • Laurent Rioux
    • 1
  • Rafik Henia
    • 1
  • Romain Soulat
    • 1
  • Olivier H. Roux
    • 2
  • Didier Lime
    • 2
  • Étienne André
    • 2
    • 3
  1. 1.THALES Research and TechnologyPalaiseauFrance
  2. 2.IRCCyNNantesFrance
  3. 3.Université Paris 13, Sorbonne Paris Cité, LIPN, CNRS, UMR 7030VilletaneuseFrance

Personalised recommendations